Educators’ Guide for Mathematics

Grade 7
West Virginia Board of Education
2018-2019

David G. Perry, President
Miller L. Hall, Vice President
Thomas W. Campbell, CPA, Financial Officer

F. Scott Rotruck, Member
Debra K. Sullivan, Member
Frank S. Vitale, Member
Joseph A. Wallace, J.D., Member
Nancy J. White, Member
James S. Wilson, D.D.S., Member

Carolyn Long, Ex Officio
Interim Chancellor
West Virginia Higher Education Policy Commission

Sarah Armstrong Tucker, Ed.D., Ex Officio
Chancellor
West Virginia Council for Community and Technical College Education

Steven L. Paine, Ed.D., Ex Officio
State Superintendent of Schools
West Virginia Department of Education
Grade Seven

As students enter grade seven, they understand variables and how to apply properties of operations to write and solve simple one-step equations. They are fluent in all positive rational number operations. Grade-seven students have been introduced to ratio concepts and applications, concepts of negative rational numbers, absolute value, and all four quadrants of the coordinate plane. They have a solid foundation for understanding area, surface area, and volume of geometric figures, as well as an introductory knowledge of statistical variability and distributions (adapted from Charles A. Dana Center 2012).

Mathematics Instruction

In grade seven, instructional time focuses on four critical areas: (1) developing understanding of and applying proportional relationships, including percentages; (2) developing understanding of operations with rational numbers and working with expressions and linear equations; (3) solving problems that involve scale drawings and informal geometric constructions and working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about populations based on samples (National Governors Association Center for Best Practices, Council of Chief State School Officers 2010n). Students work toward fluently solving equations of the form $px + q = r$ and $p(x + q) = r$.

West Virginia College- and Career-Readiness Standards for Mathematics

The West Virginia College- and Career-Readiness Standards for Mathematics (WVBE Policy 2520.2B) emphasize key content, skills, and practices at each grade level.

- Instruction is focused on grade-level standards.
- Instruction is attentive to learning across grades and to linking major topics within grades.
- Instruction develops conceptual understanding, procedural skill and fluency, and application.

Grade-level examples of these three major principles are indicated throughout this document.

Cluster headings are viewed as the most effective way to communicate the focus and coherence of the standards. The instructional focus is based on the depth of the ideas, the time needed to master the clusters, and their importance to future mathematics or the later demands of preparing for college and careers.

Teachers and administrators know the standards are not topics to be checked off after being covered in isolated units of instruction; rather, they provide content to be developed throughout the school year through rich instructional experiences presented in a coherent manner. West
Virginia College- and Career-Readiness Standards for Mathematics are learning goals for students that are mastered by the end of grade seven in order for students to be prepared for the mathematics content in grade eight.

Connecting Mathematical Habits of Mind and Content

The Mathematical Habits of Mind (MHM) are developed throughout each grade and, together with the content standards, prescribe that students experience mathematics as a thorough, coherent, useful, and logical subject. The Mathematical Habits of Mind represent a picture of what it looks like for students to understand and do mathematics in the classroom and are integrated into every mathematics lesson for all students.

Although the description of the Mathematical Habits of Mind remains the same at all grade levels, the way these standards look as students engage with and master new and more advanced mathematical ideas does change. The following table presents examples of how the Mathematical Habits of Mind are integrated into tasks appropriate for students in grade seven.

<table>
<thead>
<tr>
<th>Mathematical Habits of Mind</th>
<th>Explanation and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHM1 Make sense of problems and persevere in solving them.</td>
<td>In grade seven, students solve problems involving ratios and rates and discuss how they solved them. Students solve real-world problems through the application of algebraic and geometric concepts. They seek the meaning of a problem and look for efficient ways to represent and solve it. They check their thinking by asking themselves “Does this make sense?” or “Can I solve the problem in a different way?” When students compare arithmetic and algebraic solutions to the same problem (M.7.10a), they identify correspondences between different approaches.</td>
</tr>
<tr>
<td>MHM2 Reason abstractly and quantitatively.</td>
<td>Students represent a wide variety of real-world contexts through the use of real numbers and variables in mathematical expressions, equations, and inequalities. Students contextualize to understand the meaning of the number or variable as related to the problem and decontextualize to manipulate symbolic representations by applying properties of operations.</td>
</tr>
<tr>
<td>MHM3 Construct viable arguments and critique the reasoning of others.</td>
<td>Students construct arguments with verbal or written explanations accompanied by expressions, equations, inequalities, models, graphs, and tables. They further refine their mathematical communication skills through mathematical discussions in which they critically evaluate their own thinking and the thinking of other students. For example, as students notice when geometric conditions determine a unique triangle, more than one triangle, or no triangle (M.7.12), they have an opportunity to construct</td>
</tr>
</tbody>
</table>

2
viable arguments and critique the reasoning of others. Students are encouraged to answer questions such as these: “How did you get that?” “Why is that true?” “Does that always work?”

| **MHM4**
 Model with mathematics. | Grade-seven students model real-world situations symbolically, graphically, tabularly, and contextually. Students form expressions, equations, or inequalities from real-world contexts and connect symbolic and graphical representations. Students use experiments or simulations to generate data sets and create probability models. Proportional relationships present opportunities for modeling. For example, for modeling purposes, the number of people who live in an apartment building might be taken as proportional to the number of stories in the building. Students are encouraged to answer questions such as “What are some ways to represent the quantities?” or “How might it help to create a table, chart, or graph?” |
| **MHM5**
 Use appropriate tools strategically. | Students consider available tools (including estimation and technology) when solving a mathematical problem and decide if particular tools might be helpful. For instance, students in grade seven may decide to represent similar data sets using dot plots with the same scale to create a visual comparison of the center and variability of the data. Students might use physical objects, spreadsheets, or applets to generate probability data and use graphing calculators or spreadsheets to manage and represent data in different forms. Teachers might ask, “What approach are you considering?” or “Why was it helpful to use ________?” |
| **MHM6**
 Attend to precision. | Students continue to refine their mathematical communication skills by using clear and precise language in their discussions with others and in their own reasoning. Students define variables, specify units of measure, and label axes accurately. Students use appropriate terminology when referring to rates, ratios, probability models, geometric figures, data displays, and components of expressions, equations, or inequalities. Teachers might ask, “What mathematical language, definitions, or properties can you use to explain ________?” |
| **MHM7**
 Look for and make use of structure. | Students routinely seek patterns or structures to model and solve problems. For instance, students recognize patterns that exist in ratio tables, making connections between the constant of proportionality in a table with the slope of a graph. Students apply properties to generate equivalent expressions and solve equations. Students compose and decompose two- and three-dimensional figures to solve real-world problems involving scale drawings, surface area, and volume. Students examine tree diagrams or systematic lists to determine the sample space |
for compound events and verify that they have listed all possibilities.
Solving an equation such as $8 = 4(x - \frac{1}{2})$
is easier if students can see and make use of structure, temporarily
viewing $(x - \frac{1}{2})$ as a single entity.

MHM8
Look for and express regularity in repeated reasoning.

In grade seven, students use repeated reasoning to understand algorithms and make generalizations about patterns. After multiple opportunities to solve and model problems, they may notice that $\frac{a}{b} = \frac{c}{d}$ if and only if $ad = bc$ and construct other examples and models that confirm their generalization. Students are encouraged to answer questions such as “How would we prove that _______?” or “How is this situation both similar to and different from other situations using these operations?”

Adapted from Arizona Department of Education (ADE) 2010, Georgia Department of Education 2011, and North Carolina Department of Public Instruction (NCDPI) 2013b.

Standards-Based Learning at Grade Seven

The following narrative is organized by the domains in the Standards for Mathematical Content and highlights some necessary foundational skills from previous grade levels. It also provides exemplars to explain the content standards, highlight connections to Standards for Mathematical Habits of Mind (MHM), and demonstrate the importance of developing conceptual understanding, procedural skill and fluency, and application.

Domain: Ratio and Proportional Relationships

A critical area of instruction in grade seven is developing an understanding and application of proportional relationships, including percentages. In grade seven, students extend their reasoning about ratios and proportional relationships in several ways. Students use ratios in cases that involve pairs of rational number entries and compute associated rates. They identify unit rates in representations of proportional relationships and work with equations in two variables to represent and analyze proportional relationships. They also solve multi-step ratio and percent problems, such as problems involving percent increase and decrease.

Ratios and Proportional Relationships

Analyse proportional relationships and use them to solve real-world and mathematical problems.

M.7.1

Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. (e.g., If a person walks 1/2 mile in each
1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.)

M.7.2
Recognize and represent proportional relationships between quantities.
 a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).
 b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams and verbal descriptions of proportional relationships.
 c. Represent proportional relationships by equations. (e.g., If total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.)
 d. Explain what a point (x,y) on the graph of a proportional relationship means in terms of the situation. Focus special attention on the points (0,0) and (1,r) where r is the unit rate.

The concept of the unit rate associated with a ratio is important in grade seven. For a ratio $a:b$ with a and $b \neq 0$,1 the unit rate is the number $\frac{a}{b}$. In grade six, students worked primarily with ratios involving whole-number quantities and discovered what it meant to have equivalent ratios. In grade seven, students find unit rates in ratios involving fractional quantities. For example, when a recipe calls for $1\frac{1}{2}$ cups of sugar to 3 cups of flour, this results in a unit rate of $\frac{1\frac{1}{2}}{3} = \frac{3}{6}$. The fact that any pair of quantities in a proportional relationship can be divided to find the unit rate is useful when students solve problems involving proportional relationships, as this allows students to set up an equation with equivalent fractions and use reasoning about equivalent fractions. For a simple example, if a recipe with the same ratio as given above calls for 12 cups of flour and a student wants to know how much sugar to use, he could set up an equation that sets unit rates equal to each other—such as $1\frac{1}{2} = 3 = \frac{S}{12}$, where S represents the number of cups needed in the recipe.

In grade six, students work with many examples of proportional relationships and represented them numerically, pictorially, graphically, and with equations in simple cases. In grade seven, students continue this work, but they examine more closely the characteristics of proportional relationships. In particular, they begin to identify these facts:

1 Although it is possible to define ratio so that a can be zero, this will rarely happen in context, so the discussion proceeds with the assumption that both a and b are non-zero.
• When proportional quantities are represented in a table, pairs of entries represent equivalent ratios.
• The graph of a proportional relationship lies on a straight line that passes through the point (0,0), indicating that when one quantity is 0, so is the other.\(^2\)
• Equations of proportional relationships in a ratio of \(a:b\) always take the form, \(y = k \cdot x\) where \(k\) is the constant \(\frac{a}{b}\) if the variables \(x\) and \(y\) are defined so that the ratio \(x:y\) is equivalent to \(a:b\). (The number \(k\) is also known as the constant of proportionality [M.7.2]).

Thus, a first step for students—one that is often overlooked—is to decide when and why two quantities are actually in a proportional relationship (M.7.2a). Students may do this by checking the characteristics listed above or by using reasoning; for example, a runner's heart rate might increase steadily as she runs faster, but her heart rate when she is standing still is not 0 beats per minute, and therefore running speed and heart rate are not proportional.

A **ratio** is a pair of non-negative numbers, \(A:B\), which are not both 0. When there are \(A\) units of one quantity for every \(B\) units of another quantity, a **rate** associated with the ratio \(A:B\) is \(\frac{A}{B}\) units of the first quantity per 1 unit of the second quantity. (Note that the two quantities may have different units.)

The associated **unit rate** is the number \(\frac{A}{B}\). The term **unit rate** refers to the numerical part of the rate; the “unit” is used to highlight the 1 in “per 1 unit of the second quantity.” Unit rates should not be confused with **unit fractions** (which have a 1 in the numerator).

A **proportional relationship** is a collection of pairs of numbers that are in equivalent ratios. A ratio \(A:B\) with \(B \neq 0\) determines a proportional relationship, namely the collection of pairs \((cA, cB)\), where \(c\) is positive. A proportional relationship is described by an equation of the form \(y = kx\), where \(k\) is a positive constant, often called a **constant of proportionality**. The constant of proportionality, \(k\), is equal to the value \(\frac{B}{A}\). The graph of a proportional relationship lies on a ray with the endpoint at the origin.

The study of proportional relationships is a foundation for the study of functions, which is introduced in grade eight and continues through higher mathematics. In grade eight, students understand that the proportional relationships they studied in grade seven are part of a broader

\(^2\) The formal reasoning behind this principle and the next one is not expected until grade eight (see M.8.7 and M.8.8). However, students will notice and informally use both principles in grade seven.
group of linear functions. Linear functions are characterized by having a constant rate of change (the change in the outputs is a constant multiple of the change in the corresponding inputs). The following examples show students determining whether a relationship is proportional; notice the different methods used.

Examples: Determining Proportional Relationships

1. If Josh is 20 and his niece Reina is 10, how old will Reina be when Josh is 40?

Solution:
This is not a proportional relationship. Students may erroneously think that this is a proportional relationship, they may decide that Reina will be 20 when Josh is 40. However, it is not true that their ages change in a ratio of 20:10 (or 2:1). As Josh ages 20 years, so does Reina, so she will be 30 when Josh is 40. Students might further investigate this situation by graphing ordered pairs \((a, b)\) where \(a\) is Josh’s age and \(b\) is Reina’s age at the same time. How does the graph differ from a graph of a proportional relationship?

2. Jaime is studying proportional relationships in class. He says that if it took two people 5 hours to paint a fence, then it must take four people 10 hours to paint a fence of the same size. Is he correct? Why or why not? Is this situation a proportional relationship? Why or why not?

Solution:
No, Jaime is not correct—at least not if it is assumed that each person works at the same rate. If more people contribute to the work, then it should take less time to paint the fence. This situation is not a proportional relationship because the graph would not be a straight line emanating from the origin.

3. If 2 pounds of melon cost $4.50 at the grocery store, would 7 pounds cost $15.75?

Solution:
Since a price per pound is typically constant at a grocery store, it stands to reason that there is a proportional relationship here:

\[
\frac{$4.50}{2 \text{ pounds}} = \frac{7 \times ($4.50)}{7 \times (2 \text{ pounds})} = \frac{$31.50}{14 \text{ pounds}} = \frac{($31.50) \times 2}{(14 \text{ pounds}) \times 2} = \frac{$15.75}{7 \text{ pounds}}
\]

It makes sense that 7 pounds would cost $15.75. (Alternatively, the unit rate is $\frac{4.50}{2} = \$2.25$, for a rate of 2.25 per pound. At that rate, 7 pounds costs $7 \times 2.25 = 7 \times 2 + 7 \times 0.25$. This equals $14 + [4 \text{ quarters}] + [3 \text{ quarters}] = 14 + 1 + 0.75$, or 15.75.)

4. The table at right gives the price for different numbers of books. Do the numbers in the table represent a proportional relationship?

Solution:
If there were a proportional relationship, it should be possible to make equivalent ratios using entries from the table. However, since the ratios 4:1 and 7:2 are not equivalent, the table does not
A juice mixture calls for 5 cups of grape juice for every 2 cups of peach juice. Use a table to represent several different batches of juice that could be made by following this recipe. Graph the data in your table on a coordinate plane. Finally, write an equation to represent the relationship between cups of grape juice and cups of peach juice in any batch of juice made according to the recipe. Identify the unit rate in each of the three representations of the proportional relationship.

<table>
<thead>
<tr>
<th>Batch</th>
<th>x Cups of Grape</th>
<th>y Cups of Peach</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2 5</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>2 5</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>2 5 or 4 5</td>
</tr>
</tbody>
</table>

Adapted from ADE 2010 and NCDPI 2013b.
Using a Table.
In grade seven, students identify pairs of values that include fractions as well as whole numbers. Thus, students include fractional amounts between 5 cups of grape juice and 2 cups of peach juice in their tables. They see that as amounts of cups of grape juice increase by 1 unit, the corresponding amounts of cups of peach juice increase by \(\frac{2}{5} \) unit, so that if we add \(x \) cups of grape juice, then we would add \(x \cdot \frac{2}{5} \) cups of peach juice. Seeing this relationship helps students to see the resulting equation, \(y = \frac{2}{5}x \). Another way to derive the equation is by seeing \(\frac{y}{x} = \frac{2}{5} \), and so multiplying each side by \(x \) would yield \(x \cdot \frac{y}{x} = \left(\frac{2}{5} \right) \cdot x \), which results in \(y = \frac{2}{5}x \).

<table>
<thead>
<tr>
<th>Batch E</th>
<th>3</th>
<th>(3 \cdot \frac{2}{5}) or (\frac{6}{5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch F</td>
<td>4</td>
<td>(4 \cdot \frac{2}{5}) or (\frac{8}{5})</td>
</tr>
<tr>
<td>Any batch made</td>
<td>(x)</td>
<td>(x \cdot \frac{2}{5}) or (\frac{2x}{5})</td>
</tr>
</tbody>
</table>

Using a Graph.
Students create a graph, realizing that even non-whole-number points represent possible combinations of grape and peach juice mixtures. They are learning to identify key features of the graph—in particular, that the resulting graph is a ray (i.e., contained in a straight line) emanating from the origin and that the point (0,0) is part of the data. They see the point \(\left(1, \frac{2}{5} \right) \) as the point corresponding to the unit rate, and they see that every positive horizontal movement of 1 unit (e.g., adding 1 cup of grape juice) results in a positive vertical movement of \(\frac{2}{5} \) of a unit (e.g., adding \(\frac{2}{5} \) cup of peach juice). The connection between this rate of change seen in the graph and the equation \(y = \frac{2}{5}x \) should be made explicit for students, and they should test that every point on the graph is of the form \(\left(x, \frac{2}{5}x \right) \).

Deriving an Equation.
Both the table and the graph show that for every 1 cup of grape juice added, \(\frac{2}{5} \) cup of peach juice is added. Thus, starting with an empty bowl, when \(x \) cups of grape juice are added, \(\frac{2}{5}x \) cup of peach juice must be added. On the graph, this corresponds to the fact that, when
starting from (0,0), every movement horizontally of x units results in a vertical movement of \(\frac{2}{5}x \) units. In either case, the equation becomes $y = \frac{2}{5}x$.

Adapted from UA Progressions Documents 2011c.

Students use a variety of methods to solve problems involving proportional relationships. They have opportunities to solve these problems with strategies such as making tape diagrams and double number lines, using tables and rates, and by relating proportional relationships to equivalent fractions as described above.

<table>
<thead>
<tr>
<th>Examples: Proportional Reasoning in Grade Seven</th>
<th>M.7.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janet can sew 35 scarves in 2 hours. At this rate, how many scarves can she sew in 5 hours?</td>
<td></td>
</tr>
<tr>
<td>Solution Strategies</td>
<td></td>
</tr>
<tr>
<td>(a) Using the Rate.</td>
<td></td>
</tr>
<tr>
<td>Since Janet can sew 35 scarves in 2 hours, this means she can sew at a rate of $35 \div 2 = 17.5$ scarves per hour. If she works for 5 hours, then she can sew 17.5 scarves per hour (\times) 5 hours = 87.5 scarves which means she can sew 87 scarves in 5 hours.</td>
<td></td>
</tr>
<tr>
<td>(b) Setting Unit Rates Equal.</td>
<td></td>
</tr>
<tr>
<td>The unit rate in this case is $\frac{35}{2} = 17.5$. If C represents the number of scarves Janet can sew in 5 hours, then the following equation can be set up:</td>
<td></td>
</tr>
</tbody>
</table>
| \[
\frac{\text{Number of Scarves}}{\text{Number of Hours}} = \frac{35}{2} = \frac{C}{5}
\] | |
| \(\frac{C}{5} \) also represents the unit rate. To solve this, we can reason that since \(2 \times 2.5 = 5 \), it must be true that $35 \times 2.5 = C$, yielding $C = 87.5$, which is interpreted to mean that Janet can sew 87 scarves in 5 hours. | |
| Alternatively, one can see that the equation above is of the form $b = ax$, where a and b are rational numbers. In that case, $C = \frac{35}{2} \div \frac{1}{5}$. | |
| **(c) Recognizing an Equation.** | |
| Students can reason that an equation relating the number of scarves, C, and the number of hours, h, takes the form $C = 17.5h$, so that C can be found by $C = 17.5(5) = 87.5$. Again, the answer is interpreted to mean that Janet can sew 87 scarves in 5 hours. | |

Adapted from ADE 2010.
A typical strategy for solving proportional relationship problems has been to “set up a proportion and cross-multiply.” The West Virginia College- and Career-Readiness Standards move away from this strategy, instead prompting students to reason about solution strategies and why they work. Setting up an equation to solve a proportional relationship problem makes perfect sense if students understand that they are setting unit rates equal to each other. Students should see this as setting up an equation in a single variable. On the other hand, if after solving multiple problems by reasoning with equivalent fractions (as in strategy [b] above) students begin to see the pattern that \(\frac{a}{b} = \frac{c}{d} \) precisely when \(ad = bc \), then this is something to be examined, not avoided, and used as a general strategy. Following are additional examples of proportional relationship problems.

Further Examples of Proportional Reasoning for Grade Seven

M.7.2

1. A truck driver averaged about 300 miles in 5.5 hours of driving. At the same rate, approximately how much more driving time will it take him to cover the remaining 1000 miles on his route?

 Solution:

 Students might see the unit rate as \(\frac{300}{5.5} \) and set up the following equation:

 \[
 \frac{300}{5.5} = \frac{1000}{h}
 \]

 In this equation, \(h \) represents the number of driving hours needed to cover the remaining 1000 miles. Students might see that \(1000 ÷ 300 = \frac{10}{3} \), so it must also be true that

 \(h ÷ 5.5 = \frac{10}{3} \). This means that:

 \[
 h = \frac{10}{3} \times 5.5 = \frac{10}{3} \times \frac{11}{2} = \frac{110}{6} = 18 \frac{1}{3}
 \]

 Therefore, the truck driver has around 18 hours and 20 minutes of driving time remaining.

2. If \(\frac{1}{2} \) gallon of paint covers \(\frac{1}{6} \) of a wall, then how much paint is needed to cover the entire wall?

 Solution:

 Students may see this as asking for the rate—that is, how much paint is needed per 1 wall. In that case, students would divide: \(\frac{1}{2} ÷ \frac{1}{6} = \frac{1}{2} \cdot \frac{6}{1} = 3 \), so that 3 gallons of paint will cover the entire wall.

 Or, a student might see that one full wall could be represented by \(\frac{1}{6} \times 6 \) so to get the amount of paint needed to cover the entire wall, he would need to multiply the amount of paint by 6 also:

 \[
 \frac{1}{2} \text{ gallon} \times 6 = 3 \text{ gallons}
 \]
3. The recipe for Perfect Purple Paint calls for mixing $\frac{1}{2}$ cup blue paint with $\frac{1}{3}$ cup red paint. If a person wanted to mix blue and red paint in the same ratio to make 20 cups of Perfect Purple Paint, how many cups of blue paint and how many cups of red paint would be needed?

Solution (Strategy 1):

“If I make 6 batches of purple, then that means I use 6 times more blue and red paint. This means I use $6 \cdot \frac{1}{2} = 3$ cups of blue and $6 \cdot \frac{1}{3} = 2$ cups of red, which yields a total of 5 cups of purple paint (i.e., 6 batches yields 5 cups). So to make 20 cups, I can multiply these amounts of blue and red by 4 to get 12 cups of blue and 8 cups of red.”

Solution (Strategy 2):

“One batch is $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ cup in volume. The fraction of one batch that is blue is then $\frac{1}{2} \div \frac{5}{6} = \frac{1}{2} \cdot \frac{6}{5} = \frac{6}{10}$. The fraction of one batch that is red is $\frac{1}{3} \div \frac{5}{6} = \frac{1}{3} \cdot \frac{6}{5} = \frac{6}{15}$. If I find these fractions of 20, that gives me how much blue and red to use: $\frac{6}{10} \cdot 20 = 12$ and $\frac{6}{15} \cdot 20 = 8$.

This means I need 12 cups of blue and 8 cups of red.”

Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems.

M.7.3

Use proportional relationships to solve multistep ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and/or percent error).

In grade six, students use ratio tables and unit rates to solve percent problems. In grade seven, students extend their work to solve multi-step ratio and percent problems (M.7.3). They explain or show their work by using a representation (e.g., numbers, words, pictures, physical objects, or equations) and verify that their answers are reasonable. Models help students identify parts of the problem and how values are related (MHM1, MHM3, MHM4). For percentage increase and decrease, students identify the original value, determine the difference, and compare the difference in the two values to the starting value.
Examples: Multi-Step Percent Problems

1. A sweater is marked down 30%. The original price was $37.50. What is the price of the sweater after it is marked down?

 Solution:

 A simple diagram like the one shown can help students see the relationship between the original price, the amount taken off, and the sale price of the sweater. In this case, students can solve the problem either by finding 70% of $37.50, or by finding 30% of $37.50 and subtracting it.

<table>
<thead>
<tr>
<th></th>
<th>$37.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original price of sweater</td>
<td>30% of 37.50</td>
</tr>
<tr>
<td>70% of 37.50</td>
<td>Sale price of sweater</td>
</tr>
</tbody>
</table>

 Seeing many examples of problems such as this one helps students to see that discount problems take the form \((100% - r\%) \cdot p = d\), where \(r\) is the amount of reduction, \(p\) is the original price, and \(d\) is the discounted price.

2. A shirt is on sale for 40% off. The sale price is $12. What was the original price?

 Solution:

 Again, a simple diagram can show the relationship between the sale price and the original price. In this case, what is known is the sale price, $12, which represents 60% of the original price. A simple equation, \(0.6p = 12\), can be set up and solved for \(p\):

 \[
 p = 12 \div 0.6 = 20
 \]

 The original price was $20.

3. Your bill at a restaurant before tax is $52.60. The sales tax is 8%. You decide to leave a tip of 20% on the pre-tax amount. How much is the tip you’ll leave? What is the total cost of dinner, including tax and tip?

 Solution:

 To calculate the tip, students find \(52.60 \cdot 0.20 = 10.52\), so the tip is $10.52. The tax is found similarly: \(52.60 \cdot 0.08 \approx 4.21\). This means the total bill is \(52.60 + 10.52 + 4.21 = 67.33\). Alternatively, students may realize that they are finding 128% of the pre-tax bill, and compute \$52.60 \cdot 1.28 \approx 67.33\).

Adapted from ADE 2010 and NCDPI 2013b.

Problems involving percentage increase or percentage decrease require careful attention to the referent whole. For example, consider the difference between these two problems:

- **Skateboard Problem 1.** After a 20% discount, Eduardo paid $140 for a SuperSick skateboard. What was the price before the discount?
• **Skateboard Problem 2.** A SuperSick skateboard costs $140 today, but the price will increase by 20% tomorrow. What will the new price be after the increase?

The solutions to these two problems are presented below and are different because the 20% refers to different wholes (or 100% amounts). In the first problem, the 20% represents 20% of the larger pre-discount amount, whereas in the second problem, the 20% is 20% of the smaller pre-increase amount.

<table>
<thead>
<tr>
<th>Solutions to Skateboard Problems</th>
<th>M.7.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skateboard Problem 1.</td>
<td></td>
</tr>
<tr>
<td>The problem can be represented with a tape diagram. Students reason that since 80% is $140, 20% is $140 ÷ 4 = $35, so 100% is then 5 × $35 = $175. Equivalently, 0.80 × 𝑥 = 140, so that 𝑥 = 140 ÷ 0.8, or 𝑥 = 140 ÷ (\frac{4}{5}) = 140 × (\frac{5}{4}) = 35 × 5 = 175.</td>
<td>Original price, 100%, is $x</td>
</tr>
<tr>
<td>Skateboard Problem 2.</td>
<td></td>
</tr>
<tr>
<td>This problem can be represented with a tape diagram as well. Students can reason that since 100% is $140, 20% is $140 ÷ 5 = 28, 20% is $140 ÷ 5 = 28, so 120% is then 6 × $28 = $168. Equivalently, 𝑥 = (1.20)(140), so 𝑥 = 168.</td>
<td>Original price, 100%, is $140</td>
</tr>
<tr>
<td></td>
<td>Sale price, 80% of the original, is $140</td>
</tr>
<tr>
<td></td>
<td>Marked-up price, 120% of the original, is $x</td>
</tr>
</tbody>
</table>

Adapted from UA Progressions Documents 2011c and the California Mathematics Framework.

Domain: The Number System

In grade six, students complete their understanding of division of fractions and achieve fluency with multi-digit division and multi-digit decimal operations. They also work with concepts of positive and negative rational numbers. They learn about signed numbers and the types of quantities that can be represented with these numbers. Students locate signed numbers on a number line and, as a result of this study, conclude that the negative side of the number line is a mirror-like reflection of the positive side. For example, by reasoning that the reflection of a reflection is the thing itself, students will have learned that \(-(-a) = a\). (Here 𝑎 may be positive, negative, or zero.) Grade-six students learn about absolute value and ordering of rational numbers, including in real-world contexts. In grade seven, a critical area of instruction is
developing an understanding of operations with rational numbers. Grade-seven students extend addition, subtraction, multiplication, and division to all rational numbers by applying these operations to both positive and negative numbers.

Adding, subtracting, multiplying, and dividing rational numbers is the culmination of numerical work with the four basic operations. The number system continues to develop in grade eight, expanding to include all real numbers by the introduction of irrational numbers. Because there are no specific standards for arithmetic with rational numbers in later grades—and because so much other work in grade seven depends on that arithmetic—fluency in arithmetic with rational numbers should be a primary goal of grade-seven instruction.

The **rational numbers** are an arithmetic system that includes 0, positive and negative whole numbers, and fractions. Wherever the term *rational numbers* is used, numbers of all types are implied, including fractions in decimal notation.

The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. M.7.4

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

- a. Describe situations in which opposite quantities combine to make 0. (e.g., A hydrogen atom has 0 charge because its two constituents are oppositely charged.)
- b. Understand $p + q$ as the number located a distance $|q|$ from p, in the positive or negative direction, depending on whether q is positive or negative. (i.e., To add “$p + q$” on the number line, start at “0” and move to “p” then move $|q|$ in the positive or negative direction depending on whether “q” is positive or negative.) Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
- c. Understand subtraction of rational numbers as adding the additive inverse, $p – q = p + (–q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference and apply this principle in real-world contexts.
- d. Apply properties of operations as strategies to add and subtract rational numbers.

In grade six, students learn that the absolute value of a rational number is its distance from zero on the number line. In grade seven, students represent addition and subtraction with positive and negative rational numbers on a horizontal or vertical number line diagram (M.7.4a–c). Students add and subtract, understanding $p + q$ as the number located a distance $|q|$ from p on
a number line, in the positive or negative direction, depending on whether \(q \) is positive or negative. They demonstrate that a number and its opposite have a sum of 0 (i.e., they are additive inverses) and understand subtraction of rational numbers as adding the additive inverse (MHM2, MHM4, MHM7).

Students' work with signed numbers begin in grade six, where they experience situations in which positive and negative numbers represent (for example) credits or debits to an account, positive or negative charges, or increases or decreases, all relative to 0. Now, students realize that in each of these situations, a positive quantity and negative quantity of the same absolute value add to make 0 (M.7.4a). For instance, the positive charge of 5 protons would neutralize the negative charge of 5 electrons, and we represent this in the following way: \(^3\)

\[(+5) + (-5) = 0\]

Students recognize that +5 and −5 are “opposites” as described in grade six, located the same distance from 0 on a number line. But they reason further that a number, \(a \), and its opposite, \(-a\), always combine to make 0:

\[a + (-a) = 0\]

This crucial fact lays the foundation for understanding addition and subtraction of signed numbers.

For the sake of simplicity, many of the examples that follow involve integers, but students' work with rational numbers should include rational numbers in different forms—positive and negative fractions, decimals, and whole numbers (including combinations). Integers might be used to introduce the ideas of signed-number operations, but student work and practice should not be limited to integer operations. If students learn to compute \(4 + (-8) \) but not \(4 + \left(-\frac{1}{3} \right) \), then they are not learning the rational number system.

Addition of Rational Numbers

Through experiences starting with whole numbers and their opposites (i.e., starting with integers only), students develop the understanding that like quantities can be combined. When addition problems have mixed signs, students see that positive and negative quantities combine as necessary to partially make zeros (i.e., they “cancel” each other), and the appropriate amount of positive or negative charge remains.

<table>
<thead>
<tr>
<th>Examples: Adding Signed Rational Numbers</th>
<th>M.7.4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: The “neutral pair” approach in these examples is meant to show where the answer comes from; it is not meant to be an efficient algorithm for adding rational numbers.</td>
<td></td>
</tr>
</tbody>
</table>

\(^3\) Teachers may wish to temporarily include the plus sign (+) to indicate positive numbers and distinguish them clearly in problems. These signs should eventually be dropped, as they are not commonly used.
1.

\[(+12) + (-7) = (+5) + (+7) = (-7) = (+5) + (0) = +5 \]

2.

\[(-12.55) + (+10.50) = (-2.05) + (-10.50) + (+10.50) = (-2.05) + (0) = -2.05 \]

3.

\[\left(+\frac{17}{2} \right) + \left(-\frac{9}{2} \right) = \left(+\frac{8}{2} \right) + \left(+\frac{9}{2} \right) + \left(-\frac{9}{2} \right) = \left(+\frac{8}{2} \right) + (0) = +\frac{8}{2} = +4 \]

Eventually, students come to realize that when adding two numbers with different signs, the sum is equal to the difference of the absolute values of the two numbers and has the same sign as the number with the larger absolute value. This understanding eventually replaces the kinds of calculations shown above, which are meant to illustrate concepts rather than serving as practical computation methods.

When students use a number line to represent the addition of integers, they can develop a general understanding that the sum \(p + q \) is the number found when moving a total of \(|q| \) units from \(p \) to the right if \(q \) is positive, and to the left if \(q \) is negative (M.7.4b). The number line below represents \((+12) + (-7)\):

![Number Line for (+12) + (-7)](image)

The concept is particularly transparent for quantities that combine to become 0, as illustrated in the example \((-6.2) + (+6.2) = 0\):

![Number Line for (-6.2) + (+6.2) = 0](image)

Subtraction of Rational Numbers

When subtracting rational numbers, the most important concept for students to grasp is that \(p - q \) gives the same result as \(p + (-q) \); that is, subtracting \(q \) is equivalent to adding the opposite of \(q \). Students have most likely already noticed that with sums such as \(10 + (-2)\), the result was the same as finding the difference, \(10 - 2\). For subtraction of quantities with the same sign, teachers may find it helpful to employ typical understandings of subtraction as “taking away” or comparing to an equivalent addition problem, as in \((–12) – (–7)\) meaning to “take away \(-7\) from \(-12\),” and compare this with \((– 12) + 7\). With an understanding that these numbers represent
negative charges, the answer of \(-5\) is arrived at fairly easily. However, by comparing this subtraction expression with the addition expression \((-12) + 7\), students see that both result in \(-5\). Through many examples, students can generalize these results to understand that \(p - q = p + (-q)\) [M.7.4c].

Examples: Subtracting Signed Rational Numbers

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Students interpret (15 - 9) as taking away 9 positive units from 15 positive units. Students should compare this with (15 + (-9)) to see that both result in 6.</td>
</tr>
<tr>
<td>2.</td>
<td>Students interpret (20.5 + (-17.5)) as a credit and debit example. They compare this with (20.5 - 17.5) and see that they arrive at the same result.</td>
</tr>
<tr>
<td>3.</td>
<td>Students can use the relationship between addition and subtraction that they learned in previous grades: namely, that (a - b = c) if and only if (c + b = a). For example, they can use this to reason that since (10 + (-1) = 9), it must be true that (1 - (-9) = 10). They compare this with (1 + 9) and realize that both yield the same result.</td>
</tr>
<tr>
<td>4.</td>
<td>Students can see subtraction as a form of comparison, particularly visible on a horizontal or vertical number line. For example, they interpret (9 - (-13)) in this way: “How any degrees warmer is a temperature of (9)°C compared to a temperature of (-13)°C?"</td>
</tr>
</tbody>
</table>

Common Concrete Models for Addition and Subtraction of Rational Numbers

Several different concrete models may be used to represent rational numbers and operations with rational numbers. It is important for teachers to understand that all such concrete models have advantages and disadvantages, and therefore care should be taken when introducing these models to students. Not every model will lend itself well to representing every aspect of operations with rational numbers. Brief descriptions of some common concrete models are provided below.

<table>
<thead>
<tr>
<th>Common Concrete Models for Representing Signed Rational Numbers</th>
<th>M.7.4d (MHM5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Number Line Models.</td>
<td>A number line is used to represent the set of all rational numbers, and directed line segments (i.e. arrows) are used to represent numbers. The length of the arrow is the absolute value of the number, and the direction of the arrow tells the sign of the number. Thus, the arrow emanating from 0 to (-3.5) on the number line represents the number (-3.5). Addition is then represented by placing arrows head to tail and looking at the number to which the final arrow points.</td>
</tr>
</tbody>
</table>
Subtraction is equivalent to adding the opposite, so we can represent $a - b$ by reversing the arrow for b and then adding it to a.

Multiplication is interpreted as scaling. For example, the product $\frac{1}{3}(-3)$ can be interpreted as an arrow one-third the length of the arrow (-3) in the same direction. That is, $\frac{1}{3}(-3) = -1$.

Chips of one color are used to represent positive units, and chips of another color are used to represent negative units (note that plus and minus signs are sometimes written on the chips). These models make it easy to represent units that are combined, and they are especially illustrative when positive and negative units are combined to create “zero pairs” (sometimes referred to as neutral pairs), representing that $a + (-a) = 0$. A disadvantage of these models is that multiplication and division are more difficult to represent, and chip models are typically used only to represent integer quantities (i.e., it is difficult to extend them to fractional quantities).
An equal number of positive and negative chips form zero pairs, representing zero.

Colored-Chip Model for $3 + (-5) = -2$

3. **Money Account Models.**
These models are used to represent addition and subtraction of rational numbers, although such numbers typically take the form of decimal dollar amounts. Positive amounts contribute to the balance, while negative amounts subtract from it. Subtracting negatives must be interpreted delicately here, as in thinking of $-(-35.00)$ as “The bank forgave the negative balance of $35.00,” which one would interpret as receiving a credit of $35.00.

Instructional Focus

Teachers are encouraged to follow a logical progression in building the rules for operations with rational numbers (M.7.4), as modeled in the narratives on addition and subtraction, making use of the structure of the number system (MHM7). Students should engage in class or small-group discussions about the meaning of operations until a conceptual understanding is reached (MHM3). Building a foundation in using the structure of numbers with addition and subtraction will also help students understand the operations of multiplication and division of signed numbers (M.7.5). Sufficient practice is required so that students can compute sums and products of rational numbers in all cases and apply these concepts to real-world situations.
Grade seven marks the culmination of the arithmetic learning progression for rational numbers. By the end of seventh grade, students’ arithmetic repertoire includes adding, subtracting, multiplying, and dividing with rational numbers, including whole numbers, fractions, decimals, and signed numbers.

The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

M.7.5

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as \((-1)(-1) = 1\) and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If \(p\) and \(q\) are integers, then \(-\frac{p}{q} = \frac{-p}{q} = \frac{p}{-q}\). Interpret quotients of rational numbers by describing real world contexts.

c. Apply properties of operations as strategies to multiply and divide rational numbers.

d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

M.7.6

Solve real-world and mathematical problems involving the four operations with rational numbers. Instructional Note: Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

Multiplication of Signed Rational Numbers

In general, multiplication of signed rational numbers is performed as with fractions and whole numbers, but according to the following rules for determining the sign of the product:

1. Different signs: \((-a) \times b = -ab\)
2. Same signs: \((-a) \times (-b) = ab\)

In these equations, both \(a\) and \(b\) can be positive, negative, or zero. Of particular importance is that \(-1 \cdot a = -a\). That is, multiplying a number by a negative 1 yields the opposite of the number. The first of these rules can be understood in terms of models. The second can be understood as being a result of properties of operations (refer to “A Derivation of the Fact That
(−1)(−1) = 1,” below). Students may also become more comfortable with rule 2 by examining patterns in products of signed numbers, such as in the following example, although this does not constitute a valid mathematical proof.

Example: Using Patterns to Investigate Products of Signed Rational Numbers

M.7.5

Students can look for patterns in a table like the one below. Reading from left to right, it is natural to conjecture that the missing numbers in the table should be 5, 10, 15, and 20.

<table>
<thead>
<tr>
<th>5×4</th>
<th>5×3</th>
<th>5×2</th>
<th>5×1</th>
<th>5×0</th>
<th>5×(−1)</th>
<th>5×(−2)</th>
<th>5×(−3)</th>
<th>5×(−4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>−5</td>
<td>−10</td>
<td>−15</td>
<td>−20</td>
</tr>
<tr>
<td>(−5)×4</td>
<td>(−5)×3</td>
<td>(−5)×2</td>
<td>(−5)×1</td>
<td>(−5)×0</td>
<td>(−5)×(−1)</td>
<td>(−5)×(−2)</td>
<td>(−5)×(−3)</td>
<td>(−5)×(−4)</td>
</tr>
<tr>
<td>−20</td>
<td>−15</td>
<td>−10</td>
<td>−5</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Ultimately, if students come to understand that (−1)(−1) = 1, then the fact that (−a)(−b) = ab follows immediately using the associative and commutative properties of multiplication:

\[
(−a)(−b) = (-1 \cdot a)(-1 \cdot b) = (-1)a(-1)b = (-1)(-1)ab = 1 \cdot ab = ab
\]

After arriving at a general understanding of these two rules for multiplying signed numbers, students multiply any rational numbers by finding the product of the absolute values of the numbers and then determining the sign according to the rules.

A Derivation of the Fact That (−1)(−1) = 1

Students are reminded that addition and multiplication are related by an important algebraic property, the **distributive property of multiplication over addition**:

\[
a(b + c) = ab + ac
\]

This property is valid for all numbers \(a, b,\) and \(c,\) and it plays an important role in the derivation here and throughout mathematics. The basis of this derivation is that the **additive inverse** of the number \(-1\) (that is, the number you add to \(-1\) to obtain 0) is equal to 1. We observe that if we add \((-1)(-1)\) and \((-1)\), the distributive property reveals something interesting:

\[
(−1)(−1)+(-1) = (-1)(-1) + (-1)(1) \quad [\text{Because } (-1) = (-1)(1)]
\]
Thus, when adding the quantity \((-1)(-1)\) to \(-1\), the result is 0. This implies that \((-1)(-1)\) is the additive inverse of \(-1\), which is \(1\). This completes the derivation.

Division of Rational Numbers

The relationship between multiplication and division allows students to infer the sign of the quotient of two rational numbers. Otherwise, division is performed as usual with whole numbers and fractions, with the sign to be determined.

Examples: Determining the Sign of a Quotient
M.7.5

If \(x = (-16) \div (-5)\), then \(x \cdot (-5) = -16\). It follows that whatever the value of \(x\) is, it must be a positive number. In this case, \(x = \frac{-16}{-5} = \frac{16}{5}\). This line of reasoning can be used to justify the general fact that for rational numbers \(p\) and \(q\) (with \(q \neq 0\)), \(-\frac{p}{q} = \frac{-p}{q}\).

If \(y = \frac{-0.2}{-50}\), then \(y \cdot 50 = -0.2\).

This implies that \(y\) must be negative, and therefore \(y = \frac{-0.2}{50} = -\frac{2}{500} = -\frac{4}{1000} = 0.004\).

If \(z = \frac{0.2}{-50}\), then \(z \cdot (-50) = 0.2\).

This implies that \(z\) must be negative, and thus \(z = \frac{0.2}{-50} = -\frac{2}{50} = -\frac{4}{1000} = -0.004\).

The latter two examples above show that \(-\frac{0.2}{50} = \frac{0.2}{-50}\). In general, it is true that \(-\frac{p}{q} = \frac{-p}{q}\) for rational numbers (with \(q \neq 0\)). Students often have trouble interpreting the expression \(-\frac{p}{q}\). To begin with, this should be interpreted as meaning “the opposite of the number \(\frac{p}{q}\).” Considering a specific example, it should be noted that because \(-\left(\frac{5}{2}\right) = -(2.5)\) is a negative number, the product of 4 and \(-\left(\frac{5}{2}\right)\) must also be a negative number. We determine that \(4 \cdot \left(-\frac{5}{2}\right) = -10\). On the other hand, this equation implies that \(-\frac{5}{2} = \frac{-10}{4} = -\frac{5}{2}\). A similar line of reasoning shows that \(-\frac{5}{2} = \frac{5}{-2}\). Examples such as these help justify that \(-\frac{p}{q} = \frac{-p}{q}\) [M.7.5b].

Students solve real-world and mathematical problems involving positive and negative rational numbers while learning to compute sums, differences, products, and quotients of rational numbers. This also shows why it is unambiguous to write \(-\frac{p}{q}\) and drop the parentheses.
numbers. They also come to understand that every rational number can be written as a decimal with an expansion that eventually repeats or terminates (i.e., eventually repeating with zeros \([M.7.5c–d, M.7.4]\) \([MHM1, MHM2, MHM5, MHM6, MHM7, MHM8]\)).

Examples of Rational-Number Problems

<table>
<thead>
<tr>
<th>Example</th>
<th>Problem Description</th>
<th>Solution</th>
</tr>
</thead>
</table>
| 1. | During a phone call, Melanie was told of the most recent transactions in her company’s business account. There were deposits of \(\$1,250\) and \(\$3,040.57\) three withdrawals of \(\$400\) each, and the bank removed two separate \(\$35\) penalties to the account that resulted from the bank’s errors. Based on this information, how much did the balance of the account change?
Solution:
The deposits are considered positive changes to the account, the three withdrawals are considered negative changes, and the two penalties of \(\$35\) each may be thought of as subtracting debits to the account. The total change to the balance could be represented in this way:
\[
\$1,250.00 + \$3,040.57 - 3(\$400.00) - 2(\$35.00) = \$3,160.57.
\]
Thus, the balance of the account increased by \(\$3,160.57\). |
| 2. | Find the product \((-373) \cdot 8\).
Solution:
“I know that the first number has a factor of \((-1)\) in it, so the product will be negative.
\[373 \cdot 8 = 2400 + 560 + 24 = 2984. \text{ So } (-373) \cdot 8 = -2984.\]” |
| 3. | Find the quotient \((-\frac{25}{26}) \div (-\frac{5}{4})\).
Solution:
“I know that the result is a positive number. This looks like a problem where I can divide the numerator and denominator:
\[\frac{25}{28} \div \frac{5}{4} = \frac{25}{28} \div \frac{6}{4} = \frac{5}{7}. \text{ The quotient is } \frac{5}{7}.\]” |
| 4. | Represent each of the following problems with a diagram, a number line, and an equation, and solve each problem.
(a) A weather balloon is 100,000 feet above sea level, and a submarine is 3 miles below sea level, directly under the weather balloon. How far apart are the submarine and the weather balloon?
(b) John was \(\$3.75\) in debt, and Mary had \(\$0.50\). John found some money in his old jacket and paid his debt. Afterward, he and Mary had the same amount of money. How much money was in John’s jacket? |
Domain: Expressions and Equations

In grade six, students begin the study of equations and inequalities and methods for solving them. In grade seven, students build on this understanding and use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems. Students also work toward fluently solving equations of the form \(px + q = r \) and \(p(x = q) = r \).

Expressions and Equations

Use properties of operations to generate equivalent expressions.

M.7.7

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

M.7.8

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. (e.g., \(a + 0.05a = 1.05a \) means that “increase by 5%” is the same as “multiply by 1.05.”)

This cluster of standards calls for students to work with linear expressions where the distributive property plays a prominent role (M.7.7). A fundamental understanding is that the distributive property works “on the right” as well as “on the left,” in addition to “forward” and “backward.” That is, students should have opportunities to see that for numbers \(a, b, \) and \(c \) and \(x, y, \) and \(z \):

\[
\begin{align*}
 a(b + c) &= ab + ac & \text{and} & \quad ab + ac &= a(b + c) \\
 (x + y)z &= xz + yz & \text{and} & \quad xz + yz &= (x + y)z
\end{align*}
\]

Students combine their understanding of parentheses as denoting single quantities with the standard order of operations, operations with rational numbers, and the properties above to rewrite expressions in different ways (M.7.8).
Common Misconceptions

Working with the Distributive Property M.7.8

Students see expressions like 7 – 2(8 – 1.5x) and realize that the expression (8 – 1.5x) is treated as a separate quantity in its own right, being multiplied by 2 and the result being subtracted from 7 (MHM7). Students may mistakenly come up with the expressions below, and each case offers a chance for class discussion about why it is not equivalent to the original (MHM3):

- 5(8 – 1.5x), subtracting 7 – 2 without realizing the multiplication must be done first
- 7 – 2(6.5x), erroneously combining 8 and –1.5x by neglecting to realize that these are not like terms
- 7 – 16 – 3x, by misapplying the distributive property or not being attentive to the rules for multiplying negative numbers

Students should have the opportunity to see this expression as equivalent to both 7 + (−2)(8 – 1.5x) and 7 – (2(8 – 1.5x)), which can aid in seeing the correct way to handle the −2 part of the expression.

Note that the standards do not expressly refer to “simplifying” expressions. Simplifying an expression is a special case of generating equivalent expressions. This is not to say that simplifying is never important, but whether one expression is “simpler” than another to work with often depends on the context. For example, the expression 50 + (x – 500) · 0.20 represents the cost of a phone plan wherein the base cost is $50 and any minutes over 500 cost $0.20 per minute (valid for x ≥ 500). However, it is more difficult to see how the equivalent expression 0.20x – 50 also represents the cost of this phone plan.

Instructional Focus

The work in standards M.7.7 and M.7.8 is closely connected to standards M.7.9 and M.7.10, as well as the multi-step proportional reasoning problems in the domain Ratios and Proportional Relationships (M.7.3). Students' work with rational-number arithmetic (M.7.4-M.7.6) is particularly relevant when they write and solve equations (M.7.7-M.7.10). Procedural fluency in solving these types of equations is an explicit goal of standard M.7.10a.

As students become familiar with multiple ways of writing an expression, they also learn that different ways of writing expressions can serve varied purposes and provide different ways of seeing a problem. In example 3 below, the connection between the expressions and the figure emphasizes that both represent the same number, and the connection between the structure of each expression and a method of calculation emphasizes the fact that expressions are built from operations on numbers (adapted from UA Progressions Documents 2011d).
1. A rectangle is twice as long as it is wide. Find as many different ways as you can to write an expression for the perimeter of such a rectangle.

 Solution:
 If W represents the width of the rectangle and L represents the length, then the perimeter could be expressed as $L + W + L + W$ This could be rewritten as $2L + 2W$ If it is known that $L = 2W$ the perimeter could be represented by $W + W + 2W + 2W$, which could be rewritten as $6W$ Alternatively, if $W = \frac{L}{2}$ the perimeter could be given in terms of the length as $L + L + \frac{L}{2} + \frac{L}{2}$ which could be rewritten as $3L$.

 Adapted from ADE 2010.

2. While Chris was driving a Canadian car, he figured out a way to mentally convert the outside temperature that the car displayed in degrees Celsius to degrees Fahrenheit. This was his method: “I took the temperature it showed and doubled it. Then I subtracted one-tenth of that doubled amount. Finally, I added 32 to get the Fahrenheit temperature.” The standard expression for finding the temperature in degrees Fahrenheit when the Celsius reading is known is $\frac{9}{5}C + 32$, where C is the temperature in degrees Celsius. Was Chris's method correct?

 Solution:
 If C is the temperature in degrees Celsius, then the first step in Chris's calculation was to find $2C$. Then, he subtracted one-tenth of that quantity, which yielded $\frac{1}{10}(2C)$. Finally, he added 32. The resulting expression was $2C - \frac{1}{10}(2C) + 32$. This could be rewritten as $2C - \frac{1}{5}C + 32$. Combining the first two terms, we got:

 $$2C - \frac{1}{5}C + 32 = \left(2 - \frac{1}{5}\right)C + 32 = \left(\frac{10}{5} - \frac{1}{5}\right)C + 32 = \frac{9}{5}C + 32$$

 Chris's calculation was correct.

3. In the well-known “Pool Border Problem,” students are asked to determine the number of tiles needed to construct a border for a pool (or grid) of size $n \times n$, represented by the white tiles in the figure. Students may first examine several examples and organize their counting of the border tiles, after which they can be asked to develop an expression for the number of border tiles, B (MHM8). Many different expressions are correct, all of which are equivalent to $4n + 4$. However, different expressions arise from different ways of seeing the construction of the border. A student who sees the border as four sides of
length n plus four corners might develop the expression $4n + 4$, while a student who sees the border as four sides of length $n + 1$ may find the expression $4(n + 1)$. It is important for students to see many different representations and understand that these representations express the same quantity in different ways (MHM7).

Adapted from NCDPI 2013b.

Expressions and Equations

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

M.7.9

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (e.g., If a woman making $25 an hour gets a 10% raise, she will make an additional $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.)

M.7.10

Use variables to represent quantities in a real-world or mathematical problem and construct simple equations and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. (e.g., The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? An arithmetic solution similar to “54 – 6 – 6 divided by 2” may be compared with the reasoning involved in solving the equation $2w – 12 = 54$. An arithmetic solution similar to “54/2 – 6” may be compared with the reasoning involved in solving the equation $2(w – 6) = 54$.)

b. Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. (e.g., As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.)

By grade seven, students begin to see whole numbers and their opposites, as well as positive and negative fractions, as belonging to a single system of rational numbers. Students solve
multi-step problems involving rational numbers presented in various forms (whole numbers, fractions, and decimals), assessing the reasonableness of their answers (MHM1), and they solve problems that result in basic linear equations and inequalities (M.7.9-M.7.10). This work is the culmination of many progressions of learning in arithmetic, problem solving, and Mathematical Habits of Mind.

Examples: Solving Equations and Inequalities

M.7.9-M.7.10 (MHM2, MHM4, MHM7)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>11.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.50</td>
</tr>
</tbody>
</table>

1. The youth group is going on a trip to the state fair. The trip costs $52.50 per student. Included in that price is $11.25 for a concert ticket and the cost of 3 passes, 2 for rides and 1 for game booths. Each of the passes costs the same price. Write an equation representing the cost of the trip and determine the price of 1 pass.

Solution:

Students can represent the situation with a tape diagram, showing that $3p + 11.25$ represents the total cost of the trip if p represents the price of each pass. Students find the equation $3p + 11.25 = 52.50$. They see the expression on the left side of the equation as some quantity $(3p)$ plus 11.25 equaling 52.50.

In that case, the equation $52.50 - 11.25 = 41.25$ represents that quantity, by the relationship between addition and subtraction. So $3p = 41.25$, which means that $p = 41.25 ÷ 3 = 13.75$. Thus, each pass costs $13.75.$

2. The student-body government initiates a campaign to change the school mascot. The school principal has agreed to change the mascot if two-thirds of the student body plus 1 additional student vote for the change. The required number of votes is 255. How many students attend the school?

Solution:

If S represents the number of students who attend the school, then $\frac{2}{3}S$ represents two-thirds of the vote, and $\frac{2}{3}S + 1$ is one more than this. Since the required number of votes is 255, we can write $\frac{2}{3}S + 1 = 255$. The quantity $\frac{2}{3}S$ plus one gives 255, so it follows that $\frac{2}{3}S = 254$. To solve this, we can find
\[\frac{2}{3} S = 254 \]
\[S = 254 \div \frac{2}{3} \]
\[S = \frac{254 \cdot \frac{3}{2}}{1} \]
\[S = \frac{762}{2} \]
\[S = 381 \]

or
\[S = 254 \div \frac{2}{3} = \frac{254 \div 2}{3} = \frac{762}{2} = 381 \]

Thus, there are 381 total students.

Alternatively, students may solve the equation \(\frac{2}{3} S = 254 \) by multiplying each side by \(\frac{3}{2} \),
giving \(\frac{3}{2} \cdot \frac{2}{3} S = 254 \cdot \frac{3}{2} \), and since \(\frac{3}{2} \cdot \frac{2}{3} = 1 \cdot S \), we get
\[S = 254 \cdot \frac{3}{2} = \frac{762}{2} = 381. \]

3. Florenca can spend at most $60 on clothes. She wants to buy a pair of jeans for $22 and spend the rest on T-shirts. Each shirt costs $8. Write an inequality for the number of T-shirts she can purchase.

Solution:

If \(t \) represents the number of T-shirts Florenca buys, then an expression for the total amount she spends on clothes is \(8t + 22 \), since each T-shirt costs $8. The term at most might be new to students, but it indicates that the amount Florenca spends must be less than or equal to $60. The inequality that results is \(8t + 22 \leq 60 \). Note that the symbol “\(\leq \)” is used here to denote that the amount Florenca spends can be less than or equal to $60. This symbol should be introduced in grade seven.

Estimation Strategies for Assessing Reasonableness of Answers (MHM1, MHM5)

Below are a few examples of estimation strategies that students may use to evaluate the reasonableness of their answers:

- **Front-end estimation with adjusting** — using the highest place value and estimating from the front end, making adjustments to the estimate by taking into account the remaining amounts
- **Clustering around an average** — when the values are close together, an average value is selected and multiplied by the number of values to determine an estimate
- **Rounding and adjusting** — rounding down or rounding up and then adjusting the estimate based on how much the rounding affected the original values
- **Using friendly or compatible numbers such as factors** — fitting numbers together (e.g., rounding to factors and grouping numbers together that have round sums like 100 or 1000)
• **Using benchmark numbers that are easy to compute** — selecting close whole numbers for fractions or decimals to determine an estimate

Adapted from KATM 2012, 7th Grade Flipbook.

<table>
<thead>
<tr>
<th>Standards Addressed</th>
<th>Explanation and Examples</th>
</tr>
</thead>
</table>
| **Connections to the Mathematical Habits of Mind** | **Sample Problem.** Julie sees a jacket that costs $32 before a sale. During the sale, prices on all items are reduced by 25%.
1. What is the cost of the jacket during the sale?
In the second week of the sale, all prices are reduced by 25% of the previous week’s price. In the third week of the sale, prices are again reduced by 25% of the previous week’s price. Likewise, in the fourth week of the sale, prices are again reduced by 25% of the previous week’s price.
2. Julie thinks that this means her jacket will be reduced to $0 at the end of the fourth week. Why might she think this, and why is she wrong?
3. If Julie decides to buy the jacket at the end of the fourth week, then how much will she have to pay for it? |
| **MHM2**
Students must reason quantitatively with regard to percentages and should be able to flexibly compute with the given numbers in various forms. | **Classroom Connections.** Teachers can assess students’ basic understanding of percentages and percent-off concepts with question 1 above. However, when students are asked to reason why Julie is incorrect in thinking that the jacket will cost $0, since $4 \times 25\% = 100\%$, they are required to understand that the number from which 25% is taken off changes each week. This is where the concept of the whole comes into play. In each situation involving percentages, ratios, or fractions, what constitutes the whole (unit, 1, 100%) is important. Finally, the third question |
| **MHM3**
A class discussion may be held for students to debate why four reductions of 25% do not constitute a total reduction of the original price by 100%. Moreover, students can explain to each other how to solve the problem correctly, and the teacher can discuss student misconceptions about percentages. | |
| **MHM5**
Students apply percentages correctly and use percentage reductions correctly. | |
| **Standards for Mathematical Content** | |
| **M.7.9.** Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to | |
calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

<table>
<thead>
<tr>
<th>Jacket Price: $32</th>
<th>Discount</th>
<th>Sale Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sale (week 1)</td>
<td>25% off</td>
<td>32 – 8 = $24</td>
</tr>
<tr>
<td>Sale (week 2)</td>
<td>25% off</td>
<td>24 – 6 = $18</td>
</tr>
<tr>
<td>Sale (week 3)</td>
<td>25% off</td>
<td>18 – 4.50 = $13.50</td>
</tr>
<tr>
<td>Sale (week 4)</td>
<td>25% off</td>
<td>13.50 – 3.375 = $10.125 ≈ $10.13</td>
</tr>
</tbody>
</table>

Domain: Geometry

In grade seven, a critical area of instruction is for students to extend their study of geometry as they solve problems involving scale drawings and informal geometric constructions. Students also work with two- and three-dimensional shapes to solve problems involving area, surface area, and volume.

Geometry

Draw, construct and describe geometrical figures and describe the relationships between them. M.7.11

Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Standard M.7.11 lays the foundation for students to understand dilations as geometric transformations. This will lead to a definition of the concept of similar shapes in eighth grade: shapes that can be obtained from one another through dilation. It is critical for students to grasp these ideas, as students need this comprehension to understand the derivation of the equations $y = mx$ and $y = mx + b$ by using similar triangles and the relationships between them. Thus standard M.7.11 should be given significant attention in grade seven. Students solve problems involving scale drawings by applying their understanding of ratios and proportions, which starts in grade six and continues in the grade-seven domain Ratios and Proportional Relationships (M.7.1–M.7.3).
Teachers should note that the notion of *similarity* has not yet been addressed. Attempts to define similar shapes as those that have the “same shape but not necessarily the same size” should be avoided. Similarity will be defined precisely in grade eight, and imprecise notions of similarity may detract from student understanding of this important concept. Shapes drawn to scale are indeed similar to each other, but could safely be referred to as “scale drawings of each other” at this grade level.

The concept of a scale drawing may be effectively introduced by allowing students to enlarge or shrink pictures on grid paper. For example, students may be asked to re-create the image on the left (below) on the same sheet of grid paper, but using 2 units of length for every 1 unit in the original picture:

![Scale drawing diagram](image)

By recording measurements in many examples, students come to see there are two important ratios with scale drawings: the ratios between two figures and the ratios within a single figure. For instance, in the illustrations above, students notice that the ratio of the topmost shorter segments and the ratio of the leftmost longer segments are equal (ratios “between” figures are equal):

\[
\frac{1\text{ cm}}{2\text{ cm}} = \frac{4\text{ cm}}{8\text{ cm}}
\]

Moreover, students see that the ratios of the topmost to leftmost or topmost to total length in each shape separately are equal (ratios “within” figures are equal):

\[
\frac{1\text{ cm}}{4\text{ cm}} = \frac{2\text{ cm}}{8\text{ cm}} \quad \text{and} \quad \frac{1\text{ cm}}{3\text{ cm}} = \frac{2\text{ cm}}{6\text{ cm}}
\]

Students should use these relationships when solving problems involving scale drawings, including problems that require mathematical justifications when drawings are *not* to scale.
Examples: Problems Involving Scale Drawings

1. Julie shows you a scale drawing of her room. If 2 centimeters on the scale drawing equal 5 feet, what are the actual dimensions of Julie’s room?

 Solution:
 Since 2 centimeters in the drawing represent 5 feet, the conversion rate is $\frac{5}{2}$ ft/cm. So each measurement given in centimeters is multiplied to obtain the true measurement of the room in feet. Thus:

 $5.6 \text{ cm} \to 5.6 \cdot \frac{5}{2} = 14 \text{ ft}$,
 $1.2 \text{ cm} \to 1.2 \cdot \frac{5}{2} = 3 \text{ ft}$,
 $2.8 \text{ cm} \to 2.8 \cdot \frac{5}{2} = 7 \text{ ft}$, etc.

2. Explain why the two triangles shown are not scale drawings of one another.

 Solution:
 Since the ratios of the heights to bases of the triangles are different, one drawing cannot be a scale drawing of the other: $\frac{2}{5} \neq \frac{4}{8}$.

Adapted from ADE 2010 and NCDPI 2012.

Geometry

Draw, construct and describe geometrical figures and describe the relationships between them.

M.7.12

Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

M.7.13

Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Students draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions, focusing on triangles (**M.7.12**). They work with three-dimensional figures and relate them to two-dimensional figures by examining cross-sections that result when three-
dimensional figures are split (M.7.13). Students also describe how two or more objects are related in space (e.g., skewed lines and the possible ways in which three planes might intersect).

Geometry

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

M.7.14
Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

M.7.15
Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

M.7.16
Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

In grade seven, students know the formulas for the area and circumference of a circle and use them to solve problems (M.7.14). To “know the formula” means to have an understanding of why the formula works and how the formula relates to the measure (area and circumference) and the figure. For instance, students can cut circles into finer and finer pie pieces (sectors) and arrange them into a shape that begins to approximate a parallelogram. Because of the way the shape was created, it has a length of approximately πr and a height of approximately r. Therefore, the approximate area of this shape is πr^2 which informally justifies the formula for the area of a circle.

![Diagram of circle cut into sectors approximating a parallelogram](image)

Adapted from KATM 2012, 7th Grade Flipbook.

<table>
<thead>
<tr>
<th>Examples: Working with the Circumference and Area of a Circle</th>
<th>M.7.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students can explore the relationship between the circumference of a circle and its diameter (or radius). For example, by tracing the circumference of a cylindrical can of beans or some other cylinder on patty paper or tracing paper and finding the diameter by folding the patty paper appropriately, students can find the approximate diameter of the base of the cylinder. If they measure a piece of string the same length as the diameter, they will find that the string can wrap around the can approximately three and one-sixth times. That is, they find that (C \approx \frac{3}{6} \cdot d \approx 3.16). When students do this for a variety of objects, they start to see that the ratio of the circumference of a circle to its diameter is always approximately the same number ((\pi)).</td>
<td></td>
</tr>
</tbody>
</table>

| **2.** The total length of a standard track is 400 meters. The straight sides of the track each measure 84.39 meters. Assuming the rounded sides of the track are half-circles, find the distance from one side of the track to the other. |
| Solution: Together, the two rounded portions of the track make one circle, the circumference of which is \(400 - 2(84.39) = 231.22 \) meters. The length across the track is represented by the diameter of this circle. If the diameter is labeled \(d \) then the resulting equation is \(231.22 = \pi d \). Using a calculator and an approximation for \(\pi \) as 3.14, students arrive at \(d = 231.22 \div \pi \approx 231.22 \div 3.14 \approx 73.64 \) meters. |

Adapted from ADE 2010.

Students continue work from grades five and six to solve problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms (M.7.16).
Example: Surface Area and Volume

The surface area of a cube is 96 square inches. What is the volume of the cube?

Solution:

Students understand from working with nets in grade six that the cube has six faces, all with equal area. Thus, the area of one face of the cube is \(96 ÷ 6 = 16\) square inches. Since each face is a square, the length of one side of the cube is 4 inches. This makes the volume \(V = 4^3 = 64\) cubic inches.

Domain: Statistics and Probability

Students are introduced to statistics in grade six. In grade seven, they extend their work with single-data distributions to compare two different data distributions and address questions about differences between populations. They also begin informal work with random sampling.

Statistics and Probability

Use random sampling to draw inferences about a population.

M.7.17

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

M.7.18

Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. (e.g., Estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.)

Students in grade seven use data from a random sample to draw inferences about a population with an unknown characteristic (M.7.17–M.7.18). For example, students could predict the mean height of grade-seven students by collecting data in several random samples.

Students recognize that it is difficult to gather statistics on an entire population. They also learn that a random sample can be representative of the total population and will generate valid predictions. Students use this information to draw inferences from data (MHM1, MHM2, MHM3, MHM4, MHM5, MHM6, MHM7). The standards in the M.7.17–M.7.18 cluster represent opportunities to apply percentages and proportional reasoning. In order to make inferences about a population, one applies such reasoning to the sample and the entire population.
Example: Random Sampling

The table below shows data collected from two random samples of 100 students regarding their school lunch preferences. Make at least two inferences based on the results.

<table>
<thead>
<tr>
<th></th>
<th>Hamburgers</th>
<th>Tacos</th>
<th>Pizza</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Sample 1</td>
<td>12</td>
<td>14</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>Student Sample 2</td>
<td>12</td>
<td>11</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>

Possible solutions:
Since the sample sizes are relatively large, and a vast majority in both samples prefer pizza, it would be safe to draw these two conclusions:
1. Most students prefer pizza.
2. More students prefer pizza than hamburgers and tacos combined.

Variability in samples can be studied by using simulation (M.7.18). Web-based software and spreadsheet programs may be used to run samples. For example, suppose students are using random sampling to determine the proportion of students who prefer football as their favorite sport, and suppose that 60% is the true proportion of the population. Students may simulate the sampling by conducting a simple experiment: place a collection of red and blue chips in a container in a ratio of 60:40, randomly select a chip 50 separate times with replacement, and record the proportion that came out red. If this experiment is repeated 200 times, students might obtain a distribution of the sample proportions similar to the one in figure below.

Results of Simulations

Proportions of red chips in 200 random samples of size 50 from a population in which 60% of the chips are red.
This is a way for students to understand that the sample proportion can vary quite a bit, from as low as 45% to as high as 75%. Students can conjecture whether this variability will increase or decrease when the sample size increases, or if this variability depends on the true population proportion (MHM3) [adapted from UA Progressions Documents 2011e].

<table>
<thead>
<tr>
<th>Statistics and Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw informal comparative inferences about two populations.</td>
</tr>
<tr>
<td>M.7.19 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.</td>
</tr>
<tr>
<td>M.7.20 Summarize numerical data sets in relation to their context, such as by:</td>
</tr>
<tr>
<td>a. Reporting the number of observations.</td>
</tr>
<tr>
<td>b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.</td>
</tr>
<tr>
<td>c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.</td>
</tr>
<tr>
<td>Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.</td>
</tr>
<tr>
<td>M.7.21 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. (e.g., The mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.)</td>
</tr>
<tr>
<td>M.7.22 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. (e.g., Decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.)</td>
</tr>
</tbody>
</table>
Grade seven continues the characterization of data distributions by measures of center and spread. To be useful, center and spread must have well-defined numerical descriptions that are commonly understood by those using the results of a statistical investigation (UA Progressions Documents 2011e). Students analyze and/or compare data sets, consider the context in which the data are collected, and identify clusters, peaks, gaps, and symmetry in the data. Students understand that data sets contain many numerical values that can be summarized by one number, such as a measure of center (mean and median) and range.

<table>
<thead>
<tr>
<th>Describing Data</th>
<th>M.7.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A measure of center gives a numerical value to represent the central tendency of the data (e.g., midpoint of an ordered list [median] or the balancing point). The range provides a single number that describes how widely the values vary across the data set. Another characteristic of a data set is the measure of variability (or spread from center) of the values.</td>
<td></td>
</tr>
</tbody>
</table>

Measures of Variability

In grade seven, variability is measured by using the interquartile range or the mean absolute deviation. The **interquartile range** (IQR) describes the variability within the middle 50% of a data set. It is found by subtracting the lower quartile from the upper quartile. In a box plot, it represents the length of the box and is not affected by outliers. Students find the IQR of a data set by finding the upper and lower quartiles and taking the difference or by reading a box plot.

Mean absolute deviation (MAD) describes the variability of the data set by determining the absolute deviation (the distance) of each data piece from the mean, and then finding the average of these deviations. Both the IQR and the MAD are represented by a single numerical value. Higher values represent a greater variability in the data.

<table>
<thead>
<tr>
<th>Example: Finding the IQR and MAD</th>
<th>M.7.20c</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the previous example, the data set was 0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6. The median (3) separated the data set into the upper 50% and the lower 50%. By further separating these two subsets, we obtain the four quartiles (i.e., 25%-sized parts of the data set).</td>
<td></td>
</tr>
</tbody>
</table>

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6

In this case, the IQR is $5 - 3 = 2$, indicating that the middle 50% of values differ by no more than 2 units. This is reflected in the dot plot, as most of the data appear to be clustered around 3 and 4.
To find the MAD of the data set above, the mean is rounded to 3.5 to simplify the calculations and find that there are 6 possible deviations from the mean:

\[|0 - 3.5|, |1 - 3.5|, |2 - 3.5|, |3 - 3.5|, |4 - 3.5|, |5 - 3.5|, |6 - 3.5| \]

This results in the set of deviations 3.5, 2.5, 0.5, 0.5, 1.5, and 2.5. When the average of all deviations in the data set is found, we obtain the following:

\[
\frac{1(3.5) + 1(2.5) + 2(1.5) + 6(0.5) + 4(0.5) + 3(1.5) + 2(2.5)}{19} \approx 1.24
\]

This is interpreted as saying that, on average, a student's score was 1.24 points away from the approximate mean of 3.5.

Adapted from ADE 2010; KATM 2012, 6th Grade Flipbook; and NCDPI 2013.

Students in grade seven interpret data displays and determine measures of center and variability from them. They summarize numerical data sets in relation to the context of the data (M.7.20).

Examples: Interpreting Data Displays

1. Students in grade seven were collecting data for a project in math class. They decided to survey the other two grade-seven classes to determine how many video games each student owns. A total of 38 students were surveyed. The data are shown in the table below, in no particular order. Create a data display. What are some observations that can be made from the data display?

<table>
<thead>
<tr>
<th>11</th>
<th>21</th>
<th>5</th>
<th>12</th>
<th>10</th>
<th>31</th>
<th>19</th>
<th>13</th>
<th>23</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>25</td>
<td>14</td>
<td>34</td>
<td>15</td>
<td>14</td>
<td>29</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>23</td>
<td>12</td>
<td>27</td>
<td>4</td>
<td>25</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>12</td>
<td>39</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>28</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Solution:

Students might make a histogram with 4 ranges (0–9, 10–19, 20–29, 30–39) to display the data. It appears from the histogram that the mean and median are somewhere between 10 and 19, since the data of so many students lie in this range. Relatively few students own more than 30 video games; in fact, further analysis may prove the data point 39 to be an outlier.
2. Ms. Wheeler asked each student in her class to write his or her age, in months, on a sticky note. The 28 students in the class brought their sticky notes to the front of the room and posted them in order on the whiteboard. The data set is listed below, in order from least to greatest. Create a data display. What are some observations that can be made from the data display?

<table>
<thead>
<tr>
<th>130</th>
<th>130</th>
<th>131</th>
<th>131</th>
<th>132</th>
<th>132</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>142</td>
<td>143</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>147</td>
<td>149</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:
By finding the five-number summary of the data, we can create a box plot. The minimum data value is 130 months, the maximum is 150 months, and the median is 139 months. To find the first quartile (Q_1) and third quartile (Q_3), we find the middle of the upper and lower 50%. Since there is an even number of data points in each of these parts, we must find the average, so that $Q_1 = \frac{132+133}{2} = 132.5$ and $Q_3 = \frac{142+143}{2} = 142.5$. Thus, the five-number summary is as follows:

<table>
<thead>
<tr>
<th>Minimum</th>
<th>First Quartile (Q_1)</th>
<th>Median</th>
<th>Third Quartile (Q_3)</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>132.5</td>
<td>139</td>
<td>142.5</td>
<td>150</td>
</tr>
</tbody>
</table>

Now a box plot is easy to construct. The box plot helps to show that the middle 50% of values lie between 132.5 months and 142.5 months. Additionally, only 25% of the values between 130 months and 132.5 months, and 25% of the values are between 142.5 and 150.

Comparing two data sets is a new concept for students (M.7.21–M.7.22). Students build on their understanding of graphs, mean, median, mean absolute deviation (MAD), and interquartile range. They know that:
- understanding data requires consideration of the measures of variability as well as the mean or median;
- variability is responsible for the overlap of two data sets, and an increase in variability can increase the overlap;
- the median is paired with the interquartile range and the mean is paired with the mean absolute deviation (adapted from NCDPI 2013b).
Example: Comparing Two Populations

College football teams are grouped with similar teams into divisions based on many factors. In terms of enrollment and revenue, schools from the Football Bowl Subdivision (FBS) are typically much larger than schools of other divisions. By contrast, Division III schools typically have smaller student populations and limited financial resources.

It is generally believed that, on average, the offensive linemen of FBS schools are heavier than those of Division III schools.

For the 2012 season, the University of Mount Union Purple Raiders football team won the Division III National Championship, and the University of Alabama Crimson Tide football team won the FBS National Championship. Following are the weights of the offensive linemen for both teams from that season. A combined dot plot for both teams is also shown.

University of Alabama

<table>
<thead>
<tr>
<th>277</th>
<th>265</th>
<th>292</th>
<th>303</th>
<th>303</th>
<th>320</th>
<th>300</th>
<th>313</th>
<th>267</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>280</td>
<td>302</td>
<td>335</td>
<td>310</td>
<td>290</td>
<td>312</td>
<td>340</td>
<td>292</td>
<td></td>
</tr>
</tbody>
</table>

University of Mount Union

<table>
<thead>
<tr>
<th>250</th>
<th>250</th>
<th>290</th>
<th>260</th>
<th>270</th>
<th>270</th>
<th>310</th>
<th>290</th>
<th>280</th>
<th>315</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>295</td>
<td>300</td>
<td>300</td>
<td>260</td>
<td>255</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here are some examples of conclusions that may be drawn from the data and the dot plot:

a. Based on a visual inspection of the dot plot, the mean of the Alabama group seems to be higher than the mean of the Mount Union group. However, the overall spread of each distribution appears to be similar, so we might expect the variability to be similar as well.

b. The Alabama mean is 300 pounds, with a MAD of 15.68 pounds. The Mount Union mean is 280.88 pounds, with a MAD of 17.99 pounds.

c. On average, it appears that an Alabama lineman’s weight is about 20 pounds heavier than that of a Mount Union lineman. We also notice that the difference in the average weights of each team is greater than 1 MAD for either team. This could be interpreted as saying that for Mount Union, on average, a lineman’s weight is not
greater than 1 MAD above 280.88 pounds, while the average Alabama lineman’s weight is already above this amount.

d. If we assume that the players from Alabama represent a random sample of players from their division (the FBS) and that Mount Union’s players represent a random sample from Division III, then it is plausible that, on average, offensive linemen from FBS schools are heavier than offensive linemen from Division III schools.

Adapted from Illustrative Mathematics 2013e.

Probability models draw on proportional reasoning and should be connected to major grade-seven work in the cluster “Analyze proportional relationships and use them to solve real-world and mathematical problems” (M.7.17, 18, & 21)

5. Data for Mount Union’s linemen were obtained from http://athletics.mountunion.edu/sports/fball/2012-13/roster (accessed January 22, 2015). Data for the University of Alabama’s linemen were obtained from http://www.rolltide.com/sports/m-footbl/mtt/alab-m-footbl-mtt.html (accessed October 31, 2014).
Statistics and Probability

Investigate chance processes and develop, use, and evaluate probability models.

M.7.23
Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely and a probability near 1 indicates a likely event.

M.7.24
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. (e.g., When rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.)

M.7.25
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. (e.g., If a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.)

b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. (e.g., Find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?)

Grade-seven students interpret probability as indicating the *long-run relative frequency* of the occurrence of an event. Students may use online simulations such as the following to support their understanding:

Students develop and use **probability models** to find the probabilities of events and investigate both *empirical probabilities* (i.e., probabilities based on observing outcomes of a simulated random process) and *theoretical probabilities* (i.e., probabilities based on the structure of the *sample space* of an event) **[M.7.25]**.
A box contains 10 red chips and 10 black chips. Without looking, each student reaches into the box and pulls out a chip. If each of the first 5 students pulls out (and keeps) a red chip, what is the probability that the sixth student will pull a red chip?

Solution: The events in question, pulling out a red or black chip, should be considered equally likely. Furthermore, though students new to probability may believe in the “gambler’s fallacy”—that since 5 red chips have already been chosen, there is a very large chance that a black chip will be chosen next—students must still compute the probabilities of events as equally likely. There are 15 chips left in the box (5 red and 10 black), so the probability that the sixth student will select a red chip is $\frac{5}{15} = \frac{1}{3}$.

Statistics and Probability

Investigate chance processes and develop, use, and evaluate probability models.

M.7.26

Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.

c. Design and use a simulation to generate frequencies for compound events. (e.g., Use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?)

Students in grade seven also examine compound events (such as tossing a coin and rolling a standard number cube) and use basic counting ideas for finding the total number of equally likely outcomes for such an event. For example, 2 outcomes for the coin and 6 outcomes for the number cube result in 12 total outcomes. At this grade level, there is no need to introduce formal methods of finding permutations and combinations. Students also use various means of organizing the outcomes of an event, such as two-way tables or tree diagrams (M.7.26a–b).
Example: Tree Diagrams

Using a tree diagram, show all possible arrangements of the letters in the name FRED. If each of the letters is on a tile and drawn at random, what is the probability that you will draw the letters F-R-E-D in that order? What is the probability that your “word” will have an F as the first letter?

Solution: A tree diagram reveals that, out of 24 total outcomes, there is only one outcome where the letters F-R-E-D appear in that order, so the probability of the event occurring is $\frac{1}{24}$. Regarding the second question, the entire top branch (6 outcomes) represents the outcomes where the first letter is F, so the probability of that occurring is $\frac{6}{24} = \frac{1}{4}$.

Adapted from ADE 2010.

Finally, students in grade seven use simulations to determine probabilities (frequencies) for compound events (7.SP.8c).

Example

If 40% of donors have type O blood, what is the probability that it will take at least 4 donors to find 1 with type O blood?

This problem offers a perfect opportunity for students to construct a simulation model. The proportion of donors with type O blood being 40% may be modeled by conducting blind drawings from a box containing markers labeled “O” and “Not O.” One option would be to have a box with 40 “O” markers and 60 “Not O” markers. The size of the donor pool would determine the best way to model the situation. If the donor pool consisted of 25 people, one could model the situation by randomly drawing craft sticks (without replacement) from a box containing 10 “O” craft sticks and 15 “Not O” craft sticks until a type O craft stick is drawn. Reasonable estimates could be achieved in 20 trials. However, if the class were evaluating a donor pool as large as 1000, and circumstances dictated use of a box with only 10 sticks, then each stick drawn would represent a population of 100 potential donors. This situation could be modeled by having successive draws with replacement until a type O stick is drawn. In order to speed up the experiment, students might note that once 3 “Not O” sticks have been drawn, the stated conditions have been met. An advanced class could be led to the observation that if the donor pool were very large, the probability of the first three donors having blood types A, B, or AB is approximated by $(1 - 0.4)^3 = (0.6)^3 = 0.216$. This exercise also represents a good opportunity to collaborate with science faculty.

Modeled after the *Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve.*