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Mathematics I 
The fundamental purpose of the Mathematics I course is to formalize and extend students’ 
understanding of linear functions and their applications. The critical topics of study deepen and 
extend understanding of linear relationships—in part, by contrasting them with exponential 
phenomena and, in part, by applying linear models to data that exhibit a linear trend. 
Mathematics I uses properties and theorems involving congruent figures to deepen and extend 
geometric knowledge gained in prior grade levels. The courses in the Integrated Pathway follow 
the structure introduced in the K–8 grade levels of the West Virginia College- and Career- 
Readiness Standards; they present mathematics as a coherent subject and blend standards from 
different conceptual categories. 

The standards in the integrated Mathematics I course come from the following conceptual 
categories: Modeling, Functions, Number and Quantity, Algebra, Geometry, and Statistics and 
Probability. The content of the course is explained below according to these conceptual 
categories, but teachers and administrators alike should note that the standards are not listed 
here in the order in which they should be taught. Moreover, the standards are not topics to be 
checked off after being covered in isolated units of instruction; rather, they provide content to 
be developed throughout the school year through rich instructional experiences. 

What Students Learn in Mathematics I 
Students in Mathematics I continue their work with expressions and modeling and analysis of 
situations. In previous grade levels, students informally defined, evaluated, and compared 
functions, using them to model relationships between quantities. In Mathematics I, students 
learn function notation and develop the concepts of domain and range. Students move beyond 
viewing functions as processes that take inputs and yield outputs and begin to view functions as 
objects that can be combined with operations (e.g., finding (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 
𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)). They explore many examples of functions, including sequences. They interpret 
functions that are represented graphically, numerically, symbolically, and verbally, translating 
between representations and understanding the limitations of various representations. They 
work with functions given by graphs and tables, keeping in mind that these representations are 
likely to be approximate and incomplete, depending upon the context. Students’ work includes 
functions that can be described or approximated by formulas, as well as those that cannot. 
When functions describe relationships between quantities arising from a context, students 
reason with the units in which those quantities are measured. Students build on and informally 
extend their understanding of integer exponents to consider exponential functions. They 
compare and contrast linear and exponential functions, distinguishing between additive and 
multiplicative change. They also interpret arithmetic sequences as linear functions and 
geometric sequences as exponential functions. 
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Students who are prepared for Mathematics I have learned to solve linear equations in one 
variable and have applied graphical and algebraic methods to analyze and solve systems of 
linear equations in two variables. Mathematics I builds on these earlier experiences by asking 
students to analyze and explain the process of solving an equation and to justify the process 
used in solving a system of equations. Students develop fluency in writing, interpreting, and 
translating between various forms of linear equations and inequalities and using them to solve 
problems. They master solving linear equations and apply related solution techniques and the 
laws of exponents to the creation and solving of simple exponential equations. Students explore 
systems of equations and inequalities, finding and interpreting solutions. All of this work is 
based on understanding quantities and the relationships between them. 
 
In Mathematics I, students build on their prior experiences with data, developing more formal 
means of assessing how a model fits data. Students use regression techniques to describe 
approximately linear relationships between quantities. They use graphical representations and 
knowledge of the context to make judgments about the appropriateness of linear models. With 
linear models, they look at residuals to analyze the goodness of fit. 
 
In previous grade levels, students were asked to draw triangles based on given measurements. 
They also gained experience with rigid motions (translations, reflections, and rotations) and 
developed notions about what it means for two objects to be congruent. In Mathematics I, 
students establish triangle congruence criteria based on analyses of rigid motions and formal 
constructions. They solve problems about triangles, quadrilaterals, and other polygons. They 
apply reasoning to complete geometric constructions and explain why the constructions work. 
Finally, building on their work with the Pythagorean Theorem in the grade-eight standards to 
find distances, students use a rectangular coordinate system to verify geometric relationships, 
including properties of special triangles and quadrilaterals and slopes of parallel and 
perpendicular lines. 
 
Examples of Key Advances from Kindergarten Through Grade Eight 

• Students build on previous work with solving linear equations and systems of linear 
equations from grades seven and eight in two ways: (a) They extend to more formal 
solution methods, including attending to the structure of linear expressions; and (b) they 
solve linear inequalities. 

• Students’ work with patterns and number sequences in the early grades extends to an 
understanding of sequences as functions. 

• Students formalize their understanding of the definition of a function, particularly their 
understanding of linear functions, emphasizing the structure of linear expressions. 
Students also begin to work with exponential functions by comparing them to linear 
functions. 
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• Work with congruence and similarity transformations that started in grades six through 
eight progresses. Students consider sufficient conditions for the congruence of triangles. 

• Work with bivariate data and scatter plots in grades six through eight is extended to 
working with lines of best fit. 

 
Connecting Mathematical Habits of Mind and Content 
The Mathematical Habits of Mind (MHM) apply throughout each course and, together with the 
content standards, prescribe that students experience mathematics as a coherent, relevant, and 
meaningful subject. The Mathematical Habits of Mind represent a picture of what it looks like for 
students to do mathematics and, to the extent possible, content instruction should include 
attention to appropriate practice standards. 
 
The West Virginia College- and Career- Readiness Standards call for an intense focus on the most 
critical material, allowing depth in learning, which is carried out through the MHM standards. 
Connecting practices and content happens in the context of working on problems; the very first 
MHM standard is to make sense of problems and persevere in solving them. The following table 
gives examples of how students can engage in the Mathematical Habits of Mind in Mathematics I. 
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Mathematical Habits of Mind—Explanation & Examples for Mathematics I 
 

Mathematical Habits of 
Mind 

Explanation and Examples 

MHM1 
Make sense of problems 
and persevere in solving 
them. 

Students persevere when attempting to understand the 
differences between linear and exponential functions. They 
make diagrams of geometric problems to help make sense of 
the problems. 

MHM2 
Reason abstractly and 
quantitatively. 

Quantitative reasoning entails the following habits: creating a 
coherent representation of the problem at hand; considering 
the units involved; attending to the meaning of quantities, not 
just how to compute them; and knowing and flexibly using 
different properties of operations and objects. 

MHM3 
Construct viable 
arguments and critique 
the reasoning of others. 

Students reason through the solving of equations, recognizing 
that solving an equation involves more than simply following 
rote rules and steps. They use language such as “If ________, 
then ________” when explaining their solution methods and 
provide justification for their reasoning.  

MHM4  
Model with mathematics. 

Students apply their mathematical understanding of linear 
and exponential functions to many real-world problems, such 
as linear and exponential growth. Students also discover 
mathematics through experimentation and examination of 
patterns in data from real-world contexts. 

MHM5  
Use appropriate tools 
strategically. 

Students develop a general understanding of the graph of an 
equation or function as a representation of that object and 
use tools such as graphing calculators or graphing software to 
create graphs in more complex examples to interpret the 
results. 

MHM6  
Attend to precision. 

Students use clear definitions in discussion with others and in 
their own reasoning. They state the meaning of the symbols 
they choose, including using the equal sign consistently and 
appropriately. They are careful about specifying units of 
measure and labeling axes to clarify the correspondence with 
quantities in a problem. 

MHM7  
Look for and make use of 
structure. 

Students recognize the significance of an existing line in a 
geometric figure and can use the strategy of drawing an 
auxiliary line for solving problems. They also can step back for 
an overview and shift perspective. They can see complicated 
things, such as some algebraic expressions, as single objects 
or as being composed of several objects. 
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MHM8  
Look for and express 
regularity in repeated 
reasoning. 

Students see that the key feature of a line in the plane is an 
equal difference in outputs over equal intervals of inputs, and 
that the result of evaluating the expression 𝑦𝑦2−𝑦𝑦1

𝑥𝑥2−𝑥𝑥1
 for points on 

the line is always equal to a certain number 𝑚𝑚. Therefore, if 
(𝑥𝑥,𝑦𝑦) is a generic point on this line, the equation 𝑚𝑚 = 𝑦𝑦−𝑦𝑦1

𝑥𝑥−𝑥𝑥1
 will 

give a general equation of that line. 
 
MHM4 holds a special place throughout the higher mathematics curriculum, as Modeling is 
considered its own conceptual category. Although the Modeling category does not include 
specific standards, the idea of using mathematics to model the world pervades all higher 
mathematics courses and should hold a significant place in instruction. In the description of the 
Mathematics I content standards that follow, Modeling is covered first to emphasize its 
importance in the higher mathematics curriculum. 
 
Examples where specific Mathematical Habits of Mind can be implemented in the Mathematics I 
standards are noted in parentheses, with the standard(s) also listed. 
 
Mathematics I Content Standards, by Conceptual Category 
The Mathematics I course is organized by domains, clusters, and then standards. The overall 
purpose and progression of the standards included in Mathematics I are described below, 
according to each conceptual category. Standards that are considered new for secondary-grades 
teachers are discussed more thoroughly than other standards. 
 

Conceptual Category: Modeling 
Modeling at the higher mathematics level goes beyond the simple application of previously 
constructed mathematics and includes real-world problems. True modeling begins with students 
asking a question about the world around them and then constructing mathematics in the 
process of attempting to answer the question. When students are presented with a real-world 
situation and challenged to ask a question, all sorts of new issues arise: Which of the quantities 
present in this situation are known and unknown? Can a table of data be made? Is there a 
functional relationship in this situation? Students need to decide on a solution path, which may 
need to be revised. They make use of tools such as calculators, dynamic geometry software, or 
spreadsheets. They use previously derived models (e.g., linear functions) as well as new 
equations or functions that apply. In addition, students may discover that answering their 
question requires solving an equation and knowing the output value of a function at an unknown 
input value. 
 
Modeling problems have an element of being genuine problems, in the sense that students care 
about answering the question under consideration. In modeling, mathematics is used as a tool 
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to answer questions that students really want answered. Students examine a problem and 
formulate a mathematical model (an equation, table, graph, and the like), compute an answer, or 
rewrite their expression to reveal new information, interpret and validate the results, and report 
out. See the following figure. This is a new approach for many teachers and may prove 
challenging to implement, but the effort should show students that mathematics is relevant to 
their lives. From a pedagogical perspective, modeling gives a concrete basis from which to 
abstract the mathematics and often serves to motivate students to become independent 
learners. 
 

Modeling Cycle 

 
 
The examples in this chapter are framed as much as possible to illustrate the concept of 
mathematical modeling. The important ideas surrounding linear and exponential functions, 
graphing, solving equations, and rates of change are explored through this lens. Readers are 
encouraged to consult Mathematical Modeling for further discussion of the modeling cycle and 
how it is integrated into the higher mathematics curriculum. 
 

Conceptual Category: Functions 
The standards in the Functions conceptual category can serve as motivation for the study of 
standards in the other Mathematics I conceptual categories. For instance, an equation wherein 
one is asked to “solve for 𝑥𝑥” can be seen as a search for the input of a function 𝑓𝑓 that gives a 
specified output, and solving the equation amounts to undoing the work of the function. Or, the 
graph of an equation such as 𝑦𝑦 = 1

3
𝑥𝑥 + 5 can be seen as a representation of a function 𝑓𝑓 where 

𝑓𝑓(𝑥𝑥) = 1
3
𝑥𝑥 + 5. Solving a more complicated equation can be seen as asking, “For which values do 

the two functions agree? (i.e., when does 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)?),” and the intersection of the two graphs 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑔𝑔(𝑥𝑥) is then connected to the solution of this equation. In general, functions 
describe in a precise way how two quantities are related and can be used to make predictions 
and generalizations, keeping true to the emphasis on modeling in higher mathematics. 
 
Functions describe situations in which one quantity determines another.  For example, the 
return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the length 
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of time the money is invested. Because theories are continually formed about dependencies 
between quantities in nature and society, functions are important tools in the construction of 
mathematical models. In school mathematics, functions usually have numerical inputs and 
outputs and are often defined by an algebraic expression. For example, the time in hours it takes 
for a car to drive 100 miles is a function of the car’s speed in miles per hour, 𝑣𝑣; the rule 𝑇𝑇(𝑣𝑣) =
100
𝑣𝑣

 expresses this relationship algebraically and defines a function whose name is 𝑇𝑇. 
 
The set of inputs to a function is called its domain. The domain is often assumed to be all inputs 
for which the expression defining a function has a value, or for which the function makes sense 
in a given context. When relationships between quantities are described, the defining 
characteristic of a function is that the input value determines the output value, or equivalently, 
that the output value depends upon the input value (University of Arizona [UA] Progressions 
Documents, 2013c, 2). 
 
A function can be described in various ways, such as by a graph (e.g., the trace of a 
seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city”; by an 
assignment, such as the fact that each individual is given a unique Social Security Number; by an 
algebraic expression, such as 𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏; or by a recursive rule, such as , 𝑓𝑓(𝑛𝑛 + 1) = 𝑓𝑓(𝑛𝑛) + 𝑏𝑏. 
The graph of a function is often a useful way of visualizing the relationship that the function 
models, and manipulating a mathematical expression for a function can shed light on the 
function’s properties. 
 

Linear and Exponential Relationships 
Understand the concept of a function and use function notation. 
M.1HS.12 
Understand that a function from one set (called the domain) to another set (called the 
range) assigns to each element of the domain exactly one element of the range. If f is a 
function and x is an element of its domain, then f(x) denotes the output of f corresponding 
to the input x. The graph of f is the graph of the equation y = f(x).  Instructional Note:  
Students should experience a variety of types of situations modeled by functions.  Detailed 
analysis of any particular class of function at this stage is not advised.  Students should 
apply these concepts throughout their future mathematics courses.  Draw examples from 
linear and exponential functions. 
 
M.1HS.13 
Use function notation, evaluate functions for inputs in their domains and interpret 
statements that use function notation in terms of a context.  Instructional Note:  Students 
should experience a variety of types of situations modeled by functions.  Detailed analysis 
of any particular class of function at this stage is not advised.  Students should apply these 
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concepts throughout their future mathematics courses.  Draw examples from linear and 
exponential functions. 
 
M.1HS.14 
Recognize that sequences are functions, sometimes defined recursively, whose domain is a 
subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = 
f(1) = 1, f(n+1) = f(n)+ f(n-1) for n ≥ 1.  Instructional Note:  Students should experience a 
variety of types of situations modeled by functions.  Detailed analysis of any particular 
class of function at this stage is not advised.  Students should apply these concepts 
throughout their future mathematics courses.  Draw examples from linear and exponential 
functions.  Draw connection to M.1HS.21, which requires students to write arithmetic and 
geometric sequences. Emphasize arithmetic and geometric sequences as examples of 
linear and exponential functions.   
 
Interpret functions that arise in applications in terms of a context. 
M.1HS.15 
For a function that models a relationship between two quantities, interpret key features of 
graphs and tables in terms of the quantities and sketch graphs showing key features given 
a verbal description of the relationship. Key features include: intercepts; intervals where 
the function is increasing, decreasing, positive or negative; relative maximums and 
minimums; symmetries; end behavior; and periodicity.  Instructional Note:  Focus on linear 
and exponential functions.  
 
M.1HS.16 
Relate the domain of a function to its graph and, where applicable, to the quantitative 
relationship it describes. (e.g., If the function h(n) gives the number of person-hours it 
takes to assemble n engines in a factory, then the positive integers would be an 
appropriate domain for the function.)  Instructional Note:  Focus on linear and exponential 
functions.  
 
M.1HS.17 
Calculate and interpret the average rate of change of a function (presented symbolically or 
as a table) over a specified interval. Estimate the rate of change from a graph.  
Instructional Note:  Focus on linear functions and intervals for exponential functions 
whose domain is a subset of the integers. Mathematics II and III will address other function 
types.  

 
While the grade-eight standards called for students to work informally with functions, students 
in Mathematics I begin to refine their understanding and use the formal mathematical language 
of functions. Standards M.1HS.12– M.1HS.20 deal with understanding the concept of a function, 
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interpreting characteristics of functions in context, and representing functions in different ways 
(MHM6). Standard M.1HS.14 calls for students to learn the language of functions and that a 
function has a domain that must be specified as well as a corresponding range. For instance, by 
itself, the equation 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 does not describe a function entirely. Similarly, though the 
expressions in the equations 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥 − 4 and 𝑔𝑔(𝑛𝑛) = 3𝑛𝑛 − 4 look the same, except for the 
variables used, 𝑓𝑓 may have as its domain all real numbers, while 𝑔𝑔 may have as its domain the 
natural numbers (i.e., defines a sequence). Students make the connection between the graph of 
the equation 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and the function itself—namely, that the coordinates of any point on the 
graph represent an input and output, expressed as ( 𝑥𝑥, 𝑓𝑓(𝑥𝑥)) and understand that the graph is a 
representation of a function. They connect the domain and range of a function to its graph 
(M.1HS.16). Note that there is neither an exploration of the notion of relation versus function nor 
the vertical line test in the West Virginia College- and Career- Readiness Standards. This is by 
design. The core question when students investigate functions is, “Does each element of the 
domain correspond to exactly one element of the range?” (UA Progressions Documents 2013c, 8). 
 
Standard M.1HS.14 introduces sequences as functions. In general, a sequence is a function 
whose inputs consist of a subset of the integers, such as {0, 1, 2, 3, 4, 5, …}. Students can begin to 
study sequences in simple contexts, such as when calculating their total pay, 𝑃𝑃, when working 
for days at $65 per day, obtaining a general expression 𝑃𝑃(𝑛𝑛) = 65 • 𝑛𝑛. Students investigate 
geometric sequences of the form 𝑔𝑔(𝑛𝑛) = 𝑎𝑎𝑟𝑟𝑛𝑛, 𝑛𝑛 ≥ 1, or 𝑔𝑔(1) = 𝑎𝑎𝑎𝑎, 𝑔𝑔(𝑛𝑛 + 1) = 𝑟𝑟 • 𝑔𝑔(𝑛𝑛), for 𝑛𝑛 ≥ 2, 
when they study population growth or decay, as in the availability of a medical drug over time, 
or financial mathematics, such as when determining compound interest. Notice that the domain 
is included in the description of the rule (adapted from UA Progressions Documents 2013c, 8). 
 

Linear and Exponential Relationships 
Analyze functions using different representations. 
M.1HS.18 
Graph functions expressed symbolically and show key features of the graph, by hand in 
simple cases and using technology for more complicated cases.  

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.  
b. Graph exponential and logarithmic functions, showing intercepts and end behavior, 

and trigonometric functions, showing period, midline, and amplitude.  
Instructional Note:  Focus on linear and exponential functions. Include comparisons of two 
functions presented algebraically. For example, compare the growth of two linear 
functions, or two exponential functions such as y = 3n and y = 100·2n. 
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M.1HS.19 
Compare properties of two functions each represented in a different way (algebraically, 
graphically, numerically in tables, or by verbal descriptions). (e.g., Given a graph of one 
quadratic function and an algebraic expression for another, say which has the larger 
maximum.)   Instructional Note:  Focus on linear and exponential functions. Include 
comparisons of two functions presented algebraically. For example, compare the growth of 
two linear functions, or two exponential functions such as y = 3n and y = 100·2n. 

 
Standards M.1HS.18 and M.1HS.19 call for students to represent functions with graphs and 
identify key features in the graph. In Mathematics I, students study only linear and exponential 
functions. They represent the same function algebraically in different forms and interpret these 
differences in terms of the graph or context. 
 

Linear and Exponential Relationships 
Build a function that models a relationship between two quantities. 
M.1HS.20 
Write a function that describes a relationship between two quantities.  

a. Determine an explicit expression, a recursive process or steps for calculation from a 
context.  

b. Combine standard function types using arithmetic operations.  (e.g., Build a 
function that models the temperature of a cooling body by adding a constant 
function to a decaying exponential, and relate these functions to the model.)  

Instructional Note:   Limit to linear and exponential functions. 
 
M.1HS.21 
Write arithmetic and geometric sequences both recursively and with an explicit formula, 
use them to model situations, and translate between the two forms.  Instructional Note:  
Limit to linear and exponential functions.  Connect arithmetic sequences to linear 
functions and geometric sequences to exponential functions.  
 
Build new functions from existing functions. 
M.1HS.22 
Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for 
specific values of k (both positive and negative); find the value of k given the graphs. 
Experiment with cases and illustrate an explanation of the effects on the graph using 
technology. Include recognizing even and odd functions from their graphs and algebraic 
expressions for them.  Instructional Note:  Focus on vertical translations of graphs of linear 
and exponential functions. Relate the vertical translation of a linear function to its y-
intercept.  While applying other transformations to a linear graph is appropriate at this 
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level, it may be difficult for students to identify or distinguish between the effects of the 
other transformations included in this standard. 

 
Knowledge of functions and expressions is only part of the complete picture. One must be able 
to understand a given situation and apply function reasoning to model how quantities change 
together. Often, the function created sheds light on the situation at hand; one can make 
predictions of future changes, for example. This is the content of standards M.1HS.20 and 
M.1HS.21. Mathematics I features the introduction of arithmetic and geometric sequences, 
written both explicitly and recursively. Students can often see the recursive pattern of a 
sequence— that is, how the sequence changes from term to term—but they may have a difficult 
time finding an explicit formula for the sequence. 
 
For example, a population of cyanobacteria can double every 6 hours under ideal conditions, at 
least until the nutrients in its supporting culture are depleted. This means a population of 500 
such bacteria would grow to 1000 in the first 6-hour period, to 2000 in the second 6-hour period, 
to 4000 in the third 6-hour period, and so forth. So if 𝑛𝑛 represents the number of 6-hour periods 
from the start, the population at that time 𝑃𝑃(𝑛𝑛) satisfies 𝑃𝑃(𝑛𝑛) = 2 • 𝑃𝑃(𝑛𝑛 − 1). This is a recursive 
formula for the sequence 𝑃𝑃(𝑛𝑛), which gives the population at a given time period 𝑛𝑛 in terms of 
the population at time period 𝑛𝑛 − 1. To find a closed, explicit formula for 𝑃𝑃(𝑛𝑛), students can 
reason that 
 

𝑃𝑃(0) = 500,𝑃𝑃(1) = 2 • 500,𝑃𝑃(2) = 2 • 2 • 500,𝑃𝑃(3) = 2 • 2 • 2 • 500, … 
 
A pattern emerges: that 𝑃𝑃(𝑛𝑛) = 2𝑛𝑛 • 500. In general, if an initial population 𝑃𝑃0 grows by a factor 
𝑟𝑟 > 1 over a fixed time period, then the population after 𝑛𝑛 time periods is given by 𝑃𝑃(𝑛𝑛) = 𝑃𝑃0𝑟𝑟𝑛𝑛. 
The following example shows that students can create functions based on prototypical ones. 
 

Example: Exponential Growth                                                                                               M.1HS.22 
The following example illustrates the type of problem that students can solve after they 
have worked with basic exponential functions. On June 1, a fast-growing species of algae is 
accidentally introduced into a lake in a city park. It starts to grow and cover the surface of 
the lake in such a way that the area covered by the algae doubles every day. If the algae 
continue to grow unabated, the lake will be totally covered, and the fish in the lake will 
suffocate. Based on the current rate at which the algae are growing, this will happen on 
June 30. 
 
Possible Questions to Ask: 

a. When will the lake be covered halfway? 
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b. Write an equation that represents the percentage of the surface area of the lake 
that is covered in algae, as a function of time (in days) that passes since the algae 
were introduced into the lake. 

 
Solution and Comments: 

a. Since the population doubles each day, and since the entire lake will be covered by 
June 30, this implies that half the lake was covered on June 29. 

b. b. If 𝑃𝑃(𝑡𝑡) represents the percentage of the lake covered by the algae, then we know 
that 𝑃𝑃(29) = 𝑃𝑃0229 = 100 (note that June 30 corresponds to t = 29). Therefore, one 
can solve for the initial percentage of the lake covered, 𝑃𝑃0 = 100

229
≈ 1.86 × 10−7. The 

equation for the percentage of the lake covered by algae at time 𝑡𝑡 is therefore 
𝑃𝑃(𝑡𝑡) = (1.86 × 10−7)2𝑡𝑡 

Adapted from Illustrative Mathematics 2013i. 

 
It should be noted that sequences often do not lend themselves to compact, explicit formulas 
such as those in the preceding example. When provided with a sufficient number of examples, 
students will be able to see this. The means for deciding which sequences do have explicit 
formulas, such as arithmetic and geometric sequences, is an important area of instruction.  
 
The content of standard M.1HS.22 has typically been left to later courses. In Mathematics I, the 
focus is on linear and exponential functions. Even and odd functions are addressed in later 
courses. In keeping with the theme of the input–output interpretation of a function, students 
should work toward developing an understanding of the effect on the output of a function under 
certain transformations, such as in the table below: 
 

Expression Interpretation 
𝑓𝑓(𝑎𝑎 + 2) The output when the input is 2 greater than a 
𝑓𝑓(𝑎𝑎) + 3 3 more than the output when the input is a 

2𝑓𝑓(𝑥𝑥) + 5 5 more than twice the output of f when the input is x 
 
Such understandings can help students to see the effect of transformations on the graph of a 
function, and in particular, can aid in understanding why it appears that the effect on the graph 
is the opposite to the transformation on the variable. For example, the graph 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 2) is the 
graph of f shifted 2 to the left, not to the right (UA Progressions Documents 2013c, 7). 
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Linear and Exponential Relationships 
Construct and compare linear, quadratic, and exponential models and solve problems. 
M.1HS.23 
Distinguish between situations that can be modeled with linear functions and with 
exponential functions.  

a. Prove that linear functions grow by equal differences over equal intervals; 
exponential functions grow by equal factors over equal intervals.  

b. Recognize situations in which one quantity changes at a constant rate per unit 
interval relative to another.  

c. Recognize situations in which a quantity grows or decays by a constant percent rate 
per unit interval relative to another.  

 
M.1HS.24 
Construct linear and exponential functions, including arithmetic and geometric sequences, 
given a graph, a description of a relationship, or two input-output pairs (include reading 
these from a table).  
 
M.1HS.25 
Observe using graphs and tables that a quantity increasing exponentially eventually 
exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial 
function.  Instructional Note:  Limit to comparisons between exponential and linear 
models.  
 
Interpret expressions for functions in terms of the situation they model. 
M.1HS.26 
Interpret the parameters in a linear or exponential function in terms of a context.  
Instructional Note:  Limit exponential functions to those of the form f(x) = bx+ k.  

 
Functions presented as expressions can model many important phenomena. Two important 
families of functions characterized by laws of growth are linear functions, which grow at a 
constant rate, and exponential functions, which grow at a constant percent rate. In standards 
M.1HS.23, students recognize and understand the defining characteristics of linear and 
exponential functions. Students have already worked extensively with linear equations. They 
have developed an understanding that an equation in two variables of the form 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 
exhibits a special relationship between the variables 𝑥𝑥 and 𝑦𝑦—namely, that a change of ∆𝑥𝑥 in the 
variable 𝑥𝑥, the independent variable, results in a change of ∆𝑦𝑦 = 𝑚𝑚 • ∆𝑥𝑥 in the dependent 
variable 𝑦𝑦. They have seen this informally, in graphs and tables of linear relationships, starting in 
the grade-eight standards (M.8.7, M.8.8, M.8.13). If one considers only integer values of 𝑥𝑥, so that 
the incremental change in 𝑥𝑥 is simply 1 unit, then the change in 𝑦𝑦 is exactly 𝑚𝑚; it is this constant 
rate of change, 𝑚𝑚, that defines linear relationships, both in discrete linear sequences and in 
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general linear functions of one real variable. Stated in a different way, students recognize that 
for successive whole-number input values, 𝑥𝑥 and 𝑥𝑥 + 1, a linear function 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 exhibits 
a constant rate of change: 
 

𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥) = [𝑚𝑚(𝑥𝑥 + 1) + 𝑏𝑏] − (𝑚𝑚𝑚𝑚 + 𝑏𝑏) = 𝑚𝑚(𝑥𝑥 + 1 − 𝑥𝑥) = 𝑚𝑚 
 
In contrast, exponential equations such as 𝑔𝑔(𝑛𝑛) = 𝑎𝑎𝑏𝑏𝑛𝑛 exhibit a constant percent change. For 
instance, a t-table for the equation 𝑦𝑦 = 3𝑛𝑛 illustrates the constant ratio of successive 𝑦𝑦-values 
for this equation: 
 

𝑛𝑛 𝑦𝑦 = 3𝑛𝑛 Ratio of successive 𝒚𝒚-values 

1 3  

2 9 9
3

= 3 

3 27 27
9

= 3 

4 81 81
27

= 3 

 
This table shows that each value of 𝑦𝑦 is 3 times the value preceding it (i.e., 300% of the value 
preceding it), illustrating the constant percent change of this exponential. In the general case, 
we have 
 

𝑔𝑔(𝑛𝑛 + 1)
𝑔𝑔(𝑛𝑛)

=
𝑎𝑎𝑏𝑏𝑛𝑛+1

𝑎𝑎𝑏𝑏𝑛𝑛
=
𝑏𝑏𝑛𝑛+1

𝑏𝑏𝑛𝑛
= 𝑏𝑏(𝑛𝑛+1)−𝑛𝑛 = 𝑏𝑏, 

 
which illustrated the constant ratio of successive values of 𝑔𝑔.  (In Mathematics I of the West 
Virginia College- and Career- Readiness Standards, only integer values for 𝑥𝑥 are considered in 
exponential equations such as 𝑦𝑦 = 𝑏𝑏𝑥𝑥.) 
 
The standards require students to prove the result above for linear functions (M.1HS.23a). In 
general, students must also be able to recognize situations that represent both linear and 
exponential functions and construct functions to describe the situations (M.1HS.24). Finally, 
students interpret the parameters in linear and exponential functions and model physical 
problems with such functions. 
 
A graphing utility, spreadsheet, or computer algebra system can be used to experiment with 
properties of these functions and their graphs and to build computational models of functions, 
including recursively defined functions (MHM4 and MHM5). Real-world examples where this can 
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be explored involve investments, mortgages, and other financial instruments. For example, 
students can develop formulas for annual compound interest based on a general formula, such 

as 𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 �1 + 𝑟𝑟
𝑛𝑛
�
𝑛𝑛𝑛𝑛

, where 𝑃𝑃0 is the initial amount invested, 𝑟𝑟 is the interest rate, is the 
number of times the interest is compounded per year, and 𝑡𝑡 is the number of years the money is 
invested. They can explore values after different time periods and compare different rates and 
plans using computer algebra software or simple spreadsheets (MHM5). This hands-on 
experimentation with such functions helps students develop an understanding of the functions’ 
behavior. 
 

Conceptual Category: Number and Quantity 
In real-world problems, the answers are usually not numbers, but quantities: numbers with 
units, which involve measurement. In their work in measurement up through grade eight, 
students primarily measure commonly used attributes such as length, area, and volume. In 
higher mathematics, students encounter a wider variety of units in modeling—for example, when 
considering acceleration, currency conversions, derived quantities such as person-hours and 
heating degree-days, social science rates such as per-capita income, and rates in everyday life 
such as points scored per game or batting averages. 
 

Relationships between Quantities 
Reason quantitatively and use units to solve problems. 
M.1HS.1 
Use units as a way to understand problems and to guide the solution of multi-step 
problems; choose and interpret units consistently in formulas; choose and interpret the 
scale and the origin in graphs and data displays.  
 
M.1HS.2 
Define appropriate quantities for the purpose of descriptive modeling.  Instructional Note:  
Working with quantities and the relationships between them provides grounding for work 
with expressions, equations, and functions.  
 
M.1HS.3 
Choose a level of accuracy appropriate to limitations on measurement when reporting 
quantities.  

 
In Mathematics I, students reason through problems with careful selection of units that are used 
to understand problems and make sense of the answers they deduce. M.1HS.1 – M.1HS.3 are 
modeling standards that refer to students’ appropriate use of units and definition of quantities. 
For instance, students can evaluate the accuracy of the following conclusion made in a 
magazine: 
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On average the human body is more than 50 percent water [by weight]. 
Runners and other endurance athletes average around 60 percent. This 
equals about 120 soda cans’ worth of water in a 160-pound runner! 
(Illustrative Mathematics 2013p). 

 
Students look for appropriate unit conversions. For example, a typical soda can holds 12 ounces 
of fluid, a pound is equivalent to 16 dry ounces, and an ounce of water weighs approximately 1 
dry ounce (at the temperature of the human body). 
 

Conceptual Category: Algebra 
In the Algebra conceptual category, students extend the work with expressions that they started 
in grades six through eight. They create and solve equations in context, utilizing the power of 
variable expressions to model real-world problems and solve them with attention to units and 
the meaning of the answers they obtain. They continue to graph equations, understanding the 
resulting picture as a representation of the points satisfying the equation. This conceptual 
category accounts for a large portion of the Mathematics I course and, along with the Functions 
category, represents the main body of content. 
 
The Algebra conceptual category in higher mathematics is very closely related to the Functions 
conceptual category (UA Progressions Documents 2013b, 2): 
 

• An expression in one variable can be viewed as defining a function: the act of evaluating 
the expression is an act of producing the function’s output given the input. 

• An equation in two variables can sometimes be viewed as defining a function, if one of 
the variables is designated as the input variable and the other as the output variable, and 
if there is just one output for each input. This is the case if the expression is in the form 
𝑦𝑦 = (expression in 𝑥𝑥) or if it can be put into that form by solving for 𝑦𝑦. 

• The notion of equivalent expressions can be understood in terms of functions: if two 
expressions are equivalent, they define the same function. 

• The solutions to an equation in one variable can be understood as the input values that 
yield the same output in the two functions defined by the expressions on each side of the 
equation. This insight allows for the method of finding approximate solutions by graphing 
functions defined by each side and finding the points where the graphs intersect. 

 
Thus, in light of understanding functions, the main content of the Algebra category (solving 
equations, working with expressions, and so forth) has a very important purpose. 
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Relationships between Quantities 
Interpret the structure of expressions. 
M.1HS.4 
Interpret expressions that represent a quantity in terms of its context.  

a. Interpret parts of an expression, such as terms, factors, and coefficients.  
b. Interpret complicated expressions by viewing one or more of their parts as a single 

entity.  For example, interpret P(1 + r)n as the  product of P and a factor not 
depending on P.  

Instructional Note:  Limit to linear expressions and to exponential expressions with integer 
exponents. 

 
An expression can be viewed as a recipe for a calculation, with numbers, symbols that represent 
numbers, arithmetic operations, exponentiation, and, at more advanced levels, the operation of 
evaluating a function. Conventions about the use of parentheses and the order of operations 
assure that each expression is unambiguous. Creating an expression that describes a 
computation involving a general quantity requires the ability to express the computation in 
general terms, abstracting from specific instances. 
 
Reading an expression with comprehension involves analysis of its underlying structure. This 
may suggest a different but equivalent way of writing the expression that exhibits some different 
aspect of its meaning. For example, p + .05p can be interpreted as the addition of a 5% tax to a 
price, 𝑝𝑝. Rewriting 𝑝𝑝 + 0.05𝑝𝑝 as 1.05𝑝𝑝 shows that adding a tax is the same as multiplying the price 
by a constant factor. Students begin this work in grades six and seven and continue this work 
with more complex expressions in Mathematics I. 
 
The following example might arise in a modeling context. It emphasizes the importance of 
understanding the meaning of expressions in a given problem. 
 

Example                                                                                                                                             M.1HS.4 
A company uses two different-sized trucks to deliver sand. The first truck can transport 
cubic yards, and the second truck can transport cubic yards. The first truck makes 𝑆𝑆 trips to 
a job site, while the second makes 𝑇𝑇 trips. What do the following expressions represent in 
practical terms? 

a. 𝑆𝑆 + 𝑇𝑇 
b. 𝑥𝑥 + 𝑦𝑦 
c. 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 
d. 𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦

𝑆𝑆+𝑇𝑇
 

 
Solutions: 
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a. 𝑆𝑆 + 𝑇𝑇 = the total number of trips both trucks make to a job site. 
b. 𝑥𝑥 + 𝑦𝑦 = the total amount of sand that both trucks can transport together. 
c. 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 = the total amount of sand (in cubic yards) being delivered to a job site by both 

trucks 
d. 𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦

𝑆𝑆+𝑇𝑇
 = the average amount of sand being transported per trip 

 
 

Relationships between Quantities 
Create equations that describe numbers or relationships. 
M.1HS.5 
Create equations and inequalities in one variable and use them to solve problems. Include 
equations arising from linear and quadratic functions and simple rational and exponential 
functions.  Instructional Note:  Limit to linear and exponential equations and in the case of 
exponential equations, limit to situations requiring evaluation of exponential functions at 
integer inputs.  
 
M.1HS.6 
Create equations in two or more variables to represent relationships between quantities; 
graph equations on coordinate axes with labels and scales.  Instructional Note:  Limit to 
linear and exponential equations and in the case of exponential equations, limit to 
situations requiring evaluation of exponential functions at integer inputs.  
 
M.1HS.7  
Represent constraints by equations or inequalities, and by systems of equations and/or 
inequalities, and interpret solutions as viable or non-viable options in a modeling context. 
(e.g., Represent inequalities describing nutritional and cost constraints on combinations of 
different foods.)   Instructional Note:  Limit to linear equations and inequalities.  
 
M.1HS.8 
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in 
solving equations.  (e.g., Rearrange Ohm’s law V = IR to highlight resistance R.  Instructional 
Note:  Limit to formulas with a linear focus.  

 
An equation is a statement of equality between two expressions. The values that make the 
equation true are the solutions to the equation. An identity, in contrast, is true for all values of 
the variables; rewriting an expression in an equivalent form often creates an identity. The 
solutions of an equation in one variable form a set of numbers that can be plotted on a number 
line; the solutions of an equation in two variables form a set of ordered pairs of numbers that 
can be plotted in the coordinate plane. This set of standards (M.1HS.5– M.1HS.8) calls for 
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students to create equations to solve problems, correctly graph the equations on the coordinate 
plane, and interpret solutions in a modeling context. 
 
The following example is designed to have students think about the meaning of the quantities 
presented in the context and choose which quantities are appropriate for the two different 
constraints presented. In particular, note that the purpose of the task is to have students 
generate the constraint equations for each part (although the problem statements avoid using 
this particular terminology), not solve the equations (Illustrative Mathematics 2013g). 
 

Example                                                                                                                          M.1HS.6– M.1HS.7 
The arabica coffee variety yields about 750 kilograms of coffee beans per hectare, and the 
robusta coffee variety yields approximately 1200 kilograms per hectare. Suppose that a 
plantation has 𝑎𝑎 hectares of arabica and 𝑟𝑟 hectares of robusta. 
a. Write an equation relating 𝑎𝑎 and 𝑟𝑟 if the plantation yields 1,000,000 kilograms of coffee.  
b. On August 14, 2003, the world market price of coffee was $1.42 per kilogram of arabica 

and $0.73 per kilogram of robusta. Write an equation relating 𝑎𝑎 and 𝑟𝑟 if the plantation 
produces coffee worth $1,000,000. 

 
Solution: 
a. The quantity hectares of arabica will yield kilograms (kg) of beans, and hectares of 

robusta will yield 1200𝑟𝑟 kg of beans. So the constraint equation is 
 

750𝑎𝑎 + 1200𝑟𝑟 = 1,000,000. 
 
b. Since 𝑎𝑎 hectares of arabica yield 750𝑎𝑎 kg of beans worth $1.42/kg, the total dollar value 

of 1.42(750𝑎𝑎) = 1065𝑎𝑎. Likewise, 𝑟𝑟 hectares of robusta yield 1200𝑟𝑟 kg of beans worth 
$0.73/kg, for a total dollar value of 0.73(1200𝑟𝑟) = 876𝑟𝑟. So the equation governing the 
possible values of 𝑎𝑎 and 𝑟𝑟 coming from the total market value of the coffee is 

 
1065𝑎𝑎 + 876𝑟𝑟 = 1,000,000. 

 
 

Reasoning with Equations 
Understand solving equations as a process of reasoning and explain the reasoning. 
M.1HS.27 
Explain each step in solving a simple equation as following from the equality of numbers 
asserted at the previous step, starting from the assumption that the original equation has 
a solution. Construct a viable argument to justify a solution method.   Instructional Note: 
Students should focus on linear equations and be able to extend and apply their reasoning 
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to other types of equations in future courses. Students will solve exponential equations 
with logarithms in Mathematics III. 
 
Solve equations and inequalities in one variable. 
M.1HS.28 
Solve linear equations and inequalities in one variable, including equations with 
coefficients represented by letters.  Instructional Note:  Extend earlier work with solving 
linear equations to solving linear inequalities in one variable and to solving literal 
equations that are linear in the variable being solved for. Include simple exponential 
equations that rely only on application of the laws of exponents, such as 5x = 125 or 2x = 
1/16. 

 
An equation can often be solved by successively deducing from it one or more simpler 
equations. For example, one can add the same constant to both sides without changing the 
solutions, but squaring both sides might lead to extraneous solutions. Strategic competence in 
solving includes looking ahead for productive manipulations and anticipating the nature and 
number of solutions. In Mathematics I, students solve linear equations and inequalities in one 
variable, including equations and inequalities with absolute values and equations with 
coefficients represented by letters (M.1HS.28). When solving equations, students make use of the 
symmetric and transitive properties and particular properties of equality regarding operations 
(e.g., “Equals added to equals are equal”). Standard M.1HS.27 requires that in any situation, 
students can solve an equation and explain the steps as resulting from previous true equations 
and using the aforementioned properties (MHM3). In this way, the idea of proof, while not 
explicitly named, is given a prominent role in the solving of equations, and the reasoning and 
justification process is not simply relegated to a future mathematics course. The following 
example illustrates the justification process that may be expected in Mathematics I. 
 

On Solving Equations: A written sequence of steps is code for a narrative line of reasoning 
that would use words such as if, then, for all, and there exists. In the process of learning to 
solve equations, students should learn certain “if–then” moves—for example, “If 𝑥𝑥 = 𝑦𝑦, 
then 𝑥𝑥 + 𝑐𝑐 = 𝑦𝑦 + 𝑐𝑐 for any 𝑐𝑐.” The danger in learning algebra is that students emerge with 
nothing but the moves, which may make it difficult to detect incorrect or made-up moves 
later on. Thus the first requirement in this domain is that students understand that solving 
equations is a process of reasoning (M.1HS.27). 
 

Fragments of Reasoning 
2𝑥𝑥 − 5 = 16 − 𝑥𝑥 

2𝑥𝑥 − 5 + 𝑥𝑥 = 16 − 𝑥𝑥 + 𝑥𝑥 
3𝑥𝑥 − 5 = 16 
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3𝑥𝑥 = 21 

𝑥𝑥 =
21
3

= 7 

 
This sequence of equations is shorthand for a line of reasoning: “If twice a number minus 5 
equals 16 minus that number, then three of that number minus 5 must be 16, by the 
properties of equality. But that means three times that number is 21, so the number is 7.” 
 
Adapted from UA Progressions Documents 2013b, 13. 

 
The same solution techniques used to solve equations can be used to rearrange formulas to 
highlight specific quantities and explore relationships between the variables involved. For 
example, the formula for the area of a trapezoid, 𝐴𝐴 = �𝑏𝑏1+𝑏𝑏2

2
� ℎ, can be solved for ℎ using the 

same deductive process (MHM7, MHM8). As will be discussed later, functional relationships can 
often be explored more deeply by rearranging equations that define such relationships; thus, 
the ability to work with equations that have letters as coefficients is an important skill. 
 
 

Reasoning with Equations 
Solve systems of equations. 
M.1HS.29 
Prove that, given a system of two equations in two variables, replacing one equation by the 
sum of that equation and a multiple of the other produces a system with the same 
solutions. Instructional Note:  Build on student experiences graphing and solving systems 
of linear equations from middle school to focus on justification of the methods used. 
Include cases where the two equations describe the same line (yielding infinitely many 
solutions) and cases where two equations describe parallel lines (yielding no solution); 
connect to M.1HS.50, which requires students to prove the slope criteria for parallel lines. 
 
M.1HS.30 
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing 
on pairs of linear equations in two variables.  Instructional Note:  Build on student 
experiences graphing and solving systems of linear equations from middle school to focus 
on justification of the methods used. Include cases where the two equations describe the 
same line (yielding infinitely many solutions) and cases where two equations describe 
parallel lines (yielding no solution); connect to M.1HS.50, which requires students to prove 
the slope criteria for parallel lines. 
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Two or more equations and/or inequalities form a system. A solution for such a system must 
satisfy every equation and inequality in the system. The process of adding one equation to 
another is understood in this way: If the two sides of one equation are equal, and the two sides 
of another equation are equal, then the sum (or difference) of the left sides of the two equations 
is equal to the sum (or difference) of the right sides. The reversibility of these steps justifies that 
an equivalent system of equations has been achieved. This crucial point should be consistently 
noted when students reason about solving systems of equations (UA Progressions Documents 
2013b, 11). 
 
When solving systems of equations, students also make frequent use of the substitution 
property of equality—for example, when solving the system 2𝑥𝑥 = 9𝑦𝑦 = 5 and 𝑦𝑦 = 1

3
𝑥𝑥 + 1, the 

expression 1
3
𝑥𝑥 + 1 can be substituted for in the first equation to obtain 2𝑥𝑥 − 9 �1

3
𝑥𝑥 + 1� = 5. 

Students also solve such systems approximately, by using graphs and tables of values 
(M.1HS.29– M.1HS.30). Presented in context, the method of solving a system of equations by 
elimination takes on meaning, as the following example shows. 
 

Example: Solving Simple Systems of Equations                                                              M.1HS.30 

To get started with understanding how to solve systems of equations by linear 
combinations, students can be encouraged to interpret a system in terms of real-world 
quantities, at least in some cases. For instance, suppose one wanted to solve this system: 
 

3𝑥𝑥 + 𝑦𝑦 = 40 
4𝑥𝑥 + 2𝑦𝑦 = 58 

 
Now consider the following scenario: Suppose 3 CDs and a magazine cost $40, while 4 CDs 
and 2 magazines cost $58. 
 

• What happens to the price when you add 1 CD and 1 magazine to your purchase? 
• What is the price if you decided to buy only 2 CDs and no magazine? 

 
Answering these questions amounts to realizing that since (3𝑥𝑥 + 𝑦𝑦) + (𝑥𝑥 + 𝑦𝑦) = 40 + 18, we 
must have that 𝑥𝑥 + 𝑦𝑦 = 18. Therefore, (3𝑥𝑥 + 𝑦𝑦) + (−1)(𝑥𝑥 + 𝑦𝑦) = 40 + (−1)18, which implies 
that 2𝑥𝑥 = 22, or 1 CD costs $11. The value of 𝑦𝑦 can now be found using either of the original 
equations: 𝑦𝑦 = 7. 
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Linear and Exponential Relationships 
Represent and solve equations and inequalities graphically. 
M.1HS.9 
Understand that the graph of an equation in two variables is the set of all its solutions 
plotted in the coordinate plane, often forming a curve (which could be a line).  
Instructional Note:  Focus on linear and exponential equations and be able to adapt and 
apply that learning to other types of equations in future courses. 
 
M.1HS.10 
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and 
y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions 
approximately, (e.g., using technology to graph the functions, make tables of values, or find 
successive approximations). Include cases where f(x) and/or g(x) are linear, polynomial, 
rational, absolute value exponential, and logarithmic functions.   Instructional Note:  Focus 
on cases where f(x) and g(x) are linear or exponential.  
 
M.1HS.11 
Graph the solutions to a linear inequality in two variables as a half-plane (excluding the 
boundary in the case of a strict inequality) and graph the solution set to a system of linear 
inequalities in two variables as the intersection of the corresponding half-planes. 

 
One of the most important goals of instruction in mathematics is to illuminate connections 
between different mathematical concepts. In particular, standards M.1HS.9–11 call for students 
to learn the relationship between the algebraic representation of an equation and its graph 
plotted in the coordinate plane and understand geometric interpretations of solutions to 
equations and inequalities. As students become more comfortable with function notation after 
studying standards M.1HS.12– M.1HS.13— for example, writing 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥 + 2 and 𝑔𝑔(𝑥𝑥) = −1

2
𝑥𝑥 +

4— they begin to see solving the equation 3𝑥𝑥 + 2 = −1
2
𝑥𝑥 + 4 as solving the equation 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥). 

That is, they find those 𝑥𝑥-values where two functions take on the same output value. Moreover, 
they graph the two equations (see following figure) and see that the 𝑥𝑥-coordinate(s) of the 
point(s) of intersection of the graphs of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑔𝑔(𝑥𝑥) are the solutions to the original 
equation. 
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Graph of a System of Two Linear Equations 
 

 
 
Students also create tables of values for functions to approximate or find exact solutions to 
equations such as that above. For example, they may use spreadsheet software to construct a 
table, as shown. 
 
Values for 𝒇𝒇(𝒙𝒙) = 𝟑𝟑𝟑𝟑 + 𝟐𝟐 and 𝒈𝒈(𝒙𝒙) = −(𝟎𝟎.𝟓𝟓)𝒙𝒙 + 𝟒𝟒 
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Using this table, students can reason that since 𝑓𝑓(𝑥𝑥) = 3.5 at 𝑥𝑥 = 0.5 and 𝑓𝑓 is increasing, and 
𝑔𝑔(𝑥𝑥) = 3.5 at 𝑥𝑥 = 1 and 𝑔𝑔 is decreasing, the two functions must take on the same value 
somewhere between these values (MHM3, MHM6). In this example, since the original equation is 
of degree one, students know that there is only one solution, and using finer increments of 𝑥𝑥 will 
approximate the solution. Examining graphs and tables and solving equations algebraically help 
students to make connections between these various representations of functions and 
equations. 
 

Conceptual Category: Geometry 
The standards for grades seven and eight introduced students to seeing two-dimensional shapes 
as part of a generic plane (the Euclidean plane) and exploring transformations of this plane as a 
way to determine whether two shapes are congruent or similar. These notions are formalized In 
Mathematics I where students use transformations to prove geometric theorems about triangles. 
Students then apply these triangle congruence theorems to prove other geometric results, 
engaging throughout in standard MHM3. 
 

Congruence, Proof, and Constructions 
Experiment with transformations in the plane. 
M.1HS.39 
Know precise definitions of angle, circle, perpendicular line, parallel line and line segment, 
based on the undefined notions of point, line, distance along a line, and distance around a 
circular arc. 
 
M.1HS.40 
Represent transformations in the plane using, for example, transparencies and geometry 
software; describe transformations as functions that take points in the plane as inputs and 
give other points as outputs. Compare transformations that preserve distance and angle to 
those that do not (e.g., translation versus horizontal stretch).  Instructional Note:  Build on 
student experience with rigid motions from earlier grades. Point out the basis of rigid 
motions in geometric concepts, (e.g., translations move points a specified distance along a 
line parallel to a specified line; rotations move objects along a circular arc with a specified 
center through a specified angle). 
 
M.1HS.41 
Given a rectangle, parallelogram, trapezoid or regular polygon, describe the rotations and 
reflections that carry it onto itself.  Instructional Note:  Build on student experience with 
rigid motions from earlier grades. Point out the basis of rigid motions in geometric 
concepts, (e.g., translations move points a specified distance along a line parallel to a 
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specified line; rotations move objects along a circular arc with a specified center through a 
specified angle). 
 
M.1HS.42 
Develop definitions of rotations, reflections and translations in terms of angles, circles, 
perpendicular lines, parallel lines and line segments.  Instructional Note:  Build on student 
experience with rigid motions from earlier grades. Point out the basis of rigid motions in 
geometric concepts, (e.g., translations move points a specified distance along a line 
parallel to a specified line; rotations move objects along a circular arc with a specified 
center through a specified angle). 
 
M.1HS.43 
Given a geometric figure and a rotation, reflection or translation draw the transformed 
figure using, e.g., graph paper, tracing paper or geometry software. Specify a sequence of 
transformations that will carry a given figure onto another.   Instructional Note:  Build on 
student experience with rigid motions from earlier grades. Point out the basis of rigid 
motions in geometric concepts, (e.g., translations move points a specified distance along a 
line parallel to a specified line; rotations move objects along a circular arc with a specified 
center through a specified angle). 
 
Understand congruence in terms of rigid motions. 
M.1HS.44 
Use geometric descriptions of rigid motions to transform figures and to predict the effect 
of a given rigid motion on a given figure; given two figures, use the definition of 
congruence in terms of rigid motions to decide if they are congruent.  Instructional Note:  
Rigid motions are at the foundation of the definition of congruence. Students reason from 
the basic properties of rigid motions (that they preserve distance and angle), which are 
assumed without proof. Rigid motions and their assumed properties can be used to 
establish the usual triangle congruence criteria, which can then be used to prove other 
theorems. 
 
M.1HS.45 
Use the definition of congruence in terms of rigid motions to show that two triangles are 
congruent if and only if corresponding pairs of sides and corresponding pairs of angles are 
congruent.  Instructional Note:  Rigid motions are at the foundation of the definition of 
congruence. Students reason from the basic properties of rigid motions (that they preserve 
distance and angle), which are assumed without proof. Rigid motions and their assumed 
properties can be used to establish the usual triangle congruence criteria, which can then 
be used to prove other theorems. 
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M.1HS.46 
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the 
definition of congruence in terms of rigid motions.  Instructional Note:  Rigid motions are 
at the foundation of the definition of congruence. Students reason from the basic 
properties of rigid motions (that they preserve distance and angle), which are assumed 
without proof. Rigid motions and their assumed properties can be used to establish the 
usual triangle congruence criteria, which can then be used to prove other theorems. 
 
Make geometric constructions. 
M.1HS.47 
Make formal geometric constructions with a variety of tools and methods (compass and 
straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). 
Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing 
perpendicular lines, including the perpendicular bisector of a line segment; and 
constructing a line parallel to a given line through a point not on the line.  Instructional 
Note:  Build on prior student experience with simple constructions. Emphasize the ability 
to formalize and defend how these constructions result in the desired objects. Some of 
these constructions are closely related to previous standards and can be introduced in 
conjunction with them. 
 
M.1HS.48 
Construct an equilateral triangle, a square and a regular hexagon inscribed in a circle.  
Instructional Note:  Build on prior student experience with simple constructions. 
Emphasize the ability to formalize and defend how these constructions result in the 
desired objects. Some of these constructions are closely related to previous standards and 
can be introduced in conjunction with them. 

 
In the Geometry conceptual category, the commonly held (but imprecise) definition that shapes 
are congruent when they “have the same size and shape” is replaced by a more mathematically 
precise one (MHM6): Two shapes are congruent if there is a sequence of rigid motions in the 
plane that takes one shape exactly onto the other. This definition is explored intuitively in the 
grade-eight standards, but it is investigated more closely in Mathematics I. In grades seven and 
eight, students experiment with transformations in the plane, but in Mathematics I they build 
more precise definitions for the rigid motions (rotation, reflection, and translation) based on 
previously defined and understood terms such as angle, circle, perpendicular line, point, line, 
between, and so forth (M.1HS.39, 41– M.1HS.42). Students base their understanding of these 
definitions on their experience with transforming figures using patty paper, transparencies, or 
geometry software (M.1HS.40– M.1HS.41, M.1HS.43; MHM5), something they started doing in grade 
eight. These transformations should be investigated both in a general plane as well as on a 
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coordinate system—especially when transformations are explicitly described by using precise 
names of points, translation vectors, and specific lines. 
 

Example: Defining Rotations                                                                                               M.1HS.42 

Mrs. B wants to help her class understand the following definition of a rotation: 
 

A rotation about a point 𝑃𝑃 through angle 𝛼𝛼 is 
a transformation 𝐴𝐴 ⟼ 𝐴𝐴′ such that (1) if point 
𝐴𝐴 is different from 𝑃𝑃, then 𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃′ and the 
measure of ∠𝐴𝐴𝐴𝐴𝐴𝐴′ = 𝛼𝛼; and (2) if point 𝐴𝐴 is 
the same as point 𝑃𝑃, then 𝐴𝐴′ = 𝐴𝐴. 

 
Mrs. B gives her students a handout with several geometric shapes on it and a point, 𝑃𝑃, 
indicated on the page. In pairs, students copy the shapes onto a transparency sheet and 
rotate them through various angles about 𝑃𝑃; then they transfer the rotated shapes back 
onto the original page and measure various lengths and angles as indicated in the 
definition. 
 
While justifying that the properties of the definition hold for the shapes given to them by 
Mrs. B, the students also make some observations about the effects of a rotation on the 
entire plane. For example: 

• Rotations preserve lengths.  
• Rotations preserve angle measures.  
• Rotations preserve parallelism. 

 
In a subsequent exercise, Mrs. B plans to allow students to explore more rotations on 
dynamic geometry software, asking them to create a geometric shape and rotate it by 
various angles about various points, both part of the object and not part of the object. 
 

 
In standards M.1HS.44– M.1HS.46, geometric transformations are given a more prominent role in 
the higher mathematics geometry curriculum than perhaps ever before. The new definition of 
congruence in terms of rigid motions applies to any shape in the plane, whereas previously, 
congruence seemed to depend on criteria that were specific only to particular shapes. For 
example, the side–side–side (SSS) congruence criterion for triangles did not extend to 
quadrilaterals, which seemed to suggest that congruence was a notion dependent on the shape 
that was considered. Although it is true that there are specific criteria for determining 
congruence of certain shapes, the basic notion of congruence is the same for all shapes. In the 
West Virginia College- and Career- Readiness Standards, the SSS criterion for triangle 
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congruence is a consequence of the definition of congruence, just as the fact that if two polygons 
are congruent, then their sides and angles can be put into a correspondence such that each 
corresponding pair of sides and angles is congruent. This concept comprises the content of 
standards M.1HS.45 and M.1HS.46, which derive congruence criteria for triangles from the new 
definition of congruence. 
 
Further discussion of standards M.1HS.45 and M.1HS.46 is warranted here. Standard M.1HS.45 
explicitly states that students show that two triangles are congruent if and only if corresponding 
pairs of sides and corresponding pairs of angles are congruent (MHM3). The depth of reasoning 
here is fairly substantial at this level, as students must be able to show, using rigid motions, that 
congruent triangles have congruent corresponding parts and that, conversely, if the 
corresponding parts of two triangles are congruent, then there is a sequence of rigid motions 
that takes one triangle to the other. The second statement may be more difficult to justify than 
the first for most students, so a justification is presented here.   
 
Suppose there are two 
triangles ∆𝐴𝐴𝐴𝐴𝐴𝐴 and 
∆𝐷𝐷𝐷𝐷𝐷𝐷 such that the 
correspondence 𝐴𝐴 ↔ 𝐷𝐷, 
𝐵𝐵 ↔ 𝐸𝐸, 𝐶𝐶 ↔ 𝐹𝐹 results in 
pairs of sides and pairs 
of angles being 
congruent. If one 
triangle were drawn on 
a fixed piece of paper 
and the other drawn on 
a separate 
transparency, then a 
student could illustrate 
a translation, 𝑇𝑇, that 
takes point 𝐴𝐴 to point 𝐷𝐷. 
A simple rotation 𝑅𝑅 about point 𝐴𝐴, if necessary, takes point 𝐵𝐵 to point 𝐸𝐸, which is certain to occur 
because 𝐴𝐴𝐴𝐴���� ≅ 𝐷𝐷𝐷𝐷���� and rotations preserve lengths. A final step that may be needed is a reflection 
𝑆𝑆 about the side 𝐴𝐴𝐴𝐴, to take point 𝐶𝐶 to point 𝐹𝐹. It is important to note why the image of point 𝐶𝐶 is 
actually 𝐹𝐹. Since ∠𝐴𝐴 is reflected about line 𝐴𝐴𝐴𝐴����, its measure is preserved. Therefore, the image of 
side 𝐴𝐴𝐴𝐴���� at least lies on line 𝐷𝐷𝐷𝐷����, since ∠𝐴𝐴 ≅ ∠𝐷𝐷. But since 𝐴𝐴𝐴𝐴���� ≅ 𝐷𝐷𝐷𝐷����, it must be the case that the 
image of point 𝐶𝐶 coincides with 𝐹𝐹. The previous discussion amounts to the fact that the 
sequence of rigid motions, 𝑇𝑇, followed by 𝑅𝑅, followed by 𝑆𝑆, maps ∆𝐴𝐴𝐴𝐴𝐴𝐴 exactly onto ∆𝐷𝐷𝐷𝐷𝐷𝐷. 
Therefore, if it is known that the corresponding parts of two triangles are congruent, then there 

Illustration of the Reasoning That Congruent Corresponding 
Parts Imply Triangle Congruence 
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is a sequence of rigid motions carrying one onto the other; that is, they are congruent. The figure 
shown above presents the steps in this reasoning. 
 
Similar reasoning applies for standard M.1HS.46, in which students justify the typical triangle 
congruence criteria such as ASA, SAS, and SSS. Experimentation with transformations of triangles 
where only two of the criteria are satisfied will result in counterexamples, and geometric 
constructions of triangles of prescribed side lengths (e.g., in the case of SSS) will leave little 
doubt that any triangle constructed with these side lengths will be congruent to another, and 
therefore that SSS holds (MHM7). Note that in standards M.1HS.39– M.1HS.46, formal proof is not 
required. Students are asked to use transformations to show that particular results are true. 
 

Connecting Algebra and Geometry through Coordinates 
Use coordinates to prove simple geometric theorems algebraically. 
M.1HS.49 
Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove 
that a figure defined by four given points in the coordinate plane is a rectangle; prove or 
disprove that the point (1, √3) lies on the circle centered at the origin and containing the 
point (0, 2).)  Instructional Note:  Reasoning with triangles in this unit is limited to right 
triangles (e.g., derive the equation for a line through two points using similar right 
triangles). 
 
M.1HS.50 
Prove the slope criteria for parallel and perpendicular lines; use them to solve geometric 
problems.  (e.g., Find the equation of a line parallel or perpendicular to a given line that 
passes through a given point.)  Instructional Note:  Reasoning with triangles in this unit is 
limited to right triangles (e.g., derive the equation for a line through two points using 
similar right triangles). Relate work on parallel lines to work on M.1HS.29 involving systems 
of equations having no solution or infinitely many solutions.   
 
M.1HS.51 
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, 
(e.g., using the distance formula). Instructional Note:  Reasoning with triangles in this unit 
is limited to right triangles (e.g., derive the equation for a line through two points using 
similar right triangles). This standard provides practice with the distance formula and its 
connection with the Pythagorean theorem.  

 
The intersection of algebra and geometry is explored in this cluster of standards. Standard 
M.1HS.49 calls for students to use coordinates to prove simple geometric theorems. For instance, 
they prove that a figure defined by four points is a rectangle by proving that lines containing 
opposite sides of the figure are parallel and lines containing adjacent sides are perpendicular. 
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Students must be fluent in finding slopes and equations of lines (where necessary) and 
understand the relationships between the slopes of parallel and perpendicular lines (M.1HS.50). 
 
Many simple geometric results can be proved algebraically, but two results of high importance 
are the slope criteria for parallel and perpendicular lines. Students in grade seven begin to study 
lines and linear equations; in Mathematics I, they not only use relationships between slopes of 
parallel and perpendicular lines to solve problems, but they also justify why these relationships 
are true. An intuitive argument for why parallel lines have the same slope might read, “Since the 
two lines never meet, each line must keep up with the other as we travel along the slopes of the 
lines. So it seems obvious that their slopes must be equal.” This intuitive thought leads to an 
equivalent statement: if given a pair of linear equations 𝑙𝑙1:𝑦𝑦 = 𝑚𝑚1𝑥𝑥 + 𝑏𝑏1 and 𝑙𝑙2:𝑦𝑦 = 𝑚𝑚2𝑥𝑥 + 𝑏𝑏2 (for 
𝑚𝑚, 𝑚𝑚2 ≠ 0) such that 𝑚𝑚1 ≠ 𝑚𝑚2—that is, such that their slopes are different—then the lines must 
intersect. Solving for the intersection of the two lines yields the 𝑥𝑥-coordinate of their 
intersection to be 𝑥𝑥 = 𝑏𝑏2−𝑏𝑏1

𝑚𝑚1−𝑚𝑚2
, which surely exists because 𝑚𝑚1 ≠ 𝑚𝑚2. It is important for students to 

understand the steps of the argument and comprehend why proving this statement is equivalent 
to proving the statement “If 𝑙𝑙1|| 𝑙𝑙2, then 𝑚𝑚1 = 𝑚𝑚2” (MHM1, MHM2). 
 
In addition, students are expected to justify why the slopes of two non-vertical perpendicular 
lines 𝑙𝑙1 and 𝑙𝑙2 satisfy the relationship 𝑚𝑚1 = − 1

𝑚𝑚2
, or 𝑚𝑚1 • 𝑚𝑚2 = −1. Although there are numerous 

ways to do this, only one way is presented here, and dynamic geometry software can be used to 
illustrate it well (MHM4). Let 𝑙𝑙1 and 𝑙𝑙2 be any two non-vertical perpendicular lines. Let 𝐴𝐴 be the 
intersection of the two lines, and let 𝐵𝐵 be any other point on 𝑙𝑙1 above 𝐴𝐴. A vertical line is drawn 
through 𝐴𝐴, a horizontal line is drawn through 𝐵𝐵, and 𝐶𝐶 is the intersection of those two lines. 
∆𝐴𝐴𝐴𝐴𝐴𝐴 is a right triangle. If 𝑎𝑎 is the horizontal displacement ∆𝑥𝑥 from 𝐶𝐶 to 𝐵𝐵, and 𝑏𝑏 is the length of 
𝐴𝐴𝐴𝐴����, then the slope of 𝑙𝑙1 is 𝑚𝑚1 = ∆𝑦𝑦

∆𝑥𝑥
= 𝑏𝑏

𝑎𝑎
. By rotating ∆𝐴𝐴𝐴𝐴𝐴𝐴 clockwise around 𝐴𝐴 by 90 degrees, the 

hypotenuse 𝐴𝐴𝐴𝐴′����� of the rotated triangle ∆𝐴𝐴𝐴𝐴′𝐶𝐶′ lies on 𝑙𝑙2. Using the legs of ∆𝐴𝐴𝐵𝐵′𝐶𝐶′, students see 
that the slope of 𝑙𝑙2 is 𝑚𝑚2 = ∆𝑦𝑦

∆𝑥𝑥
= −𝑎𝑎

𝑏𝑏
. Thus 𝑚𝑚1 • 𝑚𝑚2 = 𝑏𝑏

𝑎𝑎
• −𝑎𝑎

𝑏𝑏
= −1. The following figure illustrates 

this proof (MHM1, MHM7). 
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Illustration of the Proof That the Slopes of Two Perpendicular Lines Are Opposite Reciprocals of 
One Another 

 
The proofs described above make use of several ideas that students learned in Mathematics I 
and prior courses—for example, the relationship between equations and their graphs in the 
plane (M.1HS.9) and solving equations with variable coefficients (M.1HS.28). An investigative 
approach that first uses several examples of lines that are perpendicular and their equations to 
find points, construct triangles, and decide if the triangles formed are right triangles will help 
students ramp up to the second proof (MHM8). Once more, the reasoning required to make 
sense of such a proof and to communicate the essence of the proof to a peer is an important 
goal of geometry instruction (MHM3). 
 

Conceptual Category: Statistics and Probability 
In Mathematics I, students build on their understanding of key ideas for describing 
distributions— shape, center, and spread—presented in the standards for grades six through 
eight. This enhanced understanding allows students to give more precise answers to deeper 
questions, often involving comparisons of data sets. 
 

Descriptive Statistics 
Summarize, represent, and interpret data on a single count or measurement variable. 
M.1HS.31 
Represent data with plots on the real number line (dot plots, histograms, and box plots).  
 
M.1HS.32 
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Use statistics appropriate to the shape of the data distribution to compare center (median, 
mean) and spread (interquartile range, standard deviation) of two or more different data 
sets.  Instructional Note:  In grades 6 – 8, students describe center and spread in a data 
distribution. Here they choose a summary statistic appropriate to the characteristics of the 
data distribution, such as the shape of the distribution or the existence of extreme data 
points.  
 
M.1HS.33 
Interpret differences in shape, center and spread in the context of the data sets, 
accounting for possible effects of extreme data points (outliers).  Instructional Note:  In 
grades 6 – 8, students describe center and spread in a data distribution. Here they choose 
a summary statistic appropriate to the characteristics of the data distribution, such as the 
shape of the distribution or the existence of extreme data points.  
 
Summarize, represent, and interpret data on two categorical and quantitative variables. 
M.1HS.34 
Summarize categorical data for two categories in two-way frequency tables. Interpret 
relative frequencies in the context of the data (including joint, marginal and conditional 
relative frequencies). Recognize possible associations and trends in the data.  
 
M.1HS.35 
Represent data on two quantitative variables on a scatter plot, and describe how the 
variables are related.  

a. Fit a function to the data; use functions fitted to data to solve problems in the 
context of the data. Use given functions or choose a function suggested by the 
context. Emphasize linear and exponential models.  

b. Informally assess the fit of a function by plotting and analyzing residuals.  (Focus 
should be on situations for which linear models are appropriate.)  

c. Fit a linear function for scatter plots that suggest a linear association.   
Instructional Note:  Students take a more sophisticated look at using a linear function to 
model the relationship between two numerical variables. In addition to fitting a line to 
data, students assess how well the model fits by analyzing residuals. 
 
Interpret linear models. 
M.1HS.36 
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in 
the context of the data.  Instructional Note:  Build on students’ work with linear 
relationships in eighth grade and introduce the correlation coefficient. The focus here is 
on the computation and interpretation of the correlation coefficient as a measure of how 
well the data fit the relationship.  
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M.1HS.37 
Compute (using technology) and interpret the correlation coefficient of a linear fit.  
Instructional Note:  Build on students’ work with linear relationships in eighth grade and 
introduce the correlation coefficient. The focus here is on the computation and 
interpretation of the correlation coefficient as a measure of how well the data fit the 
relationship.  
 
M.1HS.38 
Distinguish between correlation and causation.  Instructional Note:  The important 
distinction between a statistical relationship and a cause-and-effect relationship arises 
here.  

 
Standards M.1HS.31– M.1HS.35 support standards M.1HS.36– M.1HS.38, in the sense that the 
former standards extend concepts students begin to learn in grades six through eight. Students 
use the shape of the distribution and the question(s) to be answered to decide on the median or 
mean as the more appropriate measure of center and to justify their choice through statistical 
reasoning. Students may use parallel box plots or histograms to compare differences in the 
shape, center, and spread of comparable data sets (M.1HS.31– M.1HS.32). 
 

Example                                                                                                                                      M.1HS.32 

The following graphs show two ways of comparing height data for males and females in the 
20–29 age group. Both involve plotting the data or data summaries (box plots or 
histograms) on the same scale, resulting in what are called parallel (or side-by-side) box 
plots and parallel histograms (M.1HS.31). The parallel box plots show an obvious difference 
in the medians and the interquartile ranges (IQRs) for the two groups; the medians for 
males and females are, respectively, 71 inches and 65 inches, while the IQRs are 5 inches 
and 4 inches. Thus, male heights center at a higher value but are slightly more variable. 
 
The parallel histograms show the distributions of heights to be mound-shaped and fairly 
symmetrical (approximately normal) in shape. Therefore, the data can be succinctly 
described using the mean and standard deviation. Heights for males and females have 
means of 70.4 inches and 64.7 inches, respectively, and standard deviations of 3.0 inches 
and 2.6 inches. Students should be able to sketch each distribution and answer questions 
about it solely from knowledge of these three facts (shape, center, and spread). For either 
group, about 68% of the data values will be within one standard deviation of the mean 
(M.1HS.32– M.1HS.33). Students also observe that the two measures of center—median and 
mean—tend to be close to each other for symmetric distributions. 
 

34



 
 
Adapted from UA Progressions Documents 2012d, 3. 

 
Students now take a deeper look at bivariate data, using their knowledge of proportions to 
describe categorical associations and using their knowledge of functions to fit models to 
quantitative data (M.1HS.34– M.1HS.35). Students have seen scatter plots in the grade-eight 
standards and now extend that knowledge to fit mathematical models that capture key elements 
of the relationship between two variables and to explain what the model indicates about the 
relationship. Students must learn to take a careful look at scatter plots, as sometimes the 
“obvious” pattern does not tell the whole story and may be misleading. A line of best fit may 
appear to fit data almost perfectly, while an examination of the residuals—the collection of 
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differences between corresponding coordinates on a least squares line and the actual data 
value for a variable—may reveal more about the behavior of the data. 
 
 

Example                                                                                                                                       M.1HS.35b 
Students must learn to examine scatter plots carefully, as sometimes the “obvious” pattern 
may not tell the whole story and could even be misleading. The graphs below show the 
median heights of growing boys from the ages of 2 through 14. The line (least squares 
regression line) with slope 2.47 inches per year of growth looks to be a perfect fit 
(M.1HS.35c). However, the residuals—the differences between the corresponding 
coordinates on the least squares line and the actual data values for each age—reveal 
additional information. A plot of the residuals shows that growth does not proceed at a 
constant rate over those years. 

 
 
Adapted from UA Progressions Documents 2012d, 5. 

 
Finally, students extend their work from topics covered in the grade-eight standards and other 
topics in Mathematics I to interpret the parameters of a linear model in the context of data that 
it represents. They compute correlation coefficients using technology and interpret the value of 
the coefficient (MHM4, MHM5). Students see situations where correlation and causation are 
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mistakenly interchanged and carefully examine the story that data and computed statistics try to 
tell (M.1HS.36– M.1HS.38). 
 
 

Common Misconceptions – By Domain 
 
Number and Quantity  

• Students often have difficulty differentiating between finding the solution to an 
equation such as 𝑥𝑥2 = 25 and taking the square root of a number.  The equation 𝑥𝑥2 = 25 
has two solutions, 5 and -5.  Expressions  such as   √32 or �(−7)2  ask for the “principal” 
square root.  As a result,   √32   = 3 and  �(−7)2 = 7 

 
• Student confusion in differentiating between expressions involving the square of a 

negative number and the negative of a square, often extend to square roots.  Students 
may need help in appreciating the Order of Operations in differentiating between the 
expressions. 

(−5)2    (-5)(-5)    25 
− (5)2    - (5)(5)    -25 
�(−5)2    √25    5 
−√52    - √25    -5 
�(5)2   √−25    5 

  
• Students may have difficulty when negative exponents involve fractions.  Students may 

incorrectly believe that 16− 1 2  means -4 rather than 1
4
.  

16− 1 2   =  
1

16
1
2
  = 1

√16
  = 1

4
 

 
Algebra  

• Students may have difficulty distinguishing between the terms of an expression and the 
variable of an expression.  For example, students may reason that the trinomial 3𝑎𝑎 + 𝑏𝑏 +
5𝑐𝑐𝑐𝑐 has four terms because the student is counting variable rather than terms.  Often 
students do not recognize a constant as a term and incorrectly identify the trinomial 
4𝑥𝑥 − 2𝑦𝑦 + 7 as having two terms. 
 

• Students who rely solely on procedures may believe they need multiply the binomials in 
an equation such as (𝑥𝑥 + 4)(𝑥𝑥 − 3) = 0 and then factor the resulting expression to solve 
for the zeros.  Students need to develop an understanding of the concept of the Zero 
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Factor Property.  Students may experience similar confusion in applying the Zero Factor 
Property in solving equations such as 5(𝑥𝑥 − 7)(𝑥𝑥 + 1) = 0  or 6𝑥𝑥(𝑥𝑥 − 7) = 0. 
 

• Students who mistakenly believe that �𝑥𝑥2 + 𝑦𝑦2  is equivalent to 𝑥𝑥 + 𝑦𝑦, may deduce this 
from the misconception that (𝑥𝑥 + 𝑦𝑦)2 is equivalent to 𝑥𝑥2 + 𝑦𝑦2.   
 

• Students who mistakenly equate (𝑥𝑥 + 𝑦𝑦)2 with 𝑥𝑥2 + 𝑦𝑦2  or equate (𝑥𝑥 − 𝑦𝑦)2 with 𝑥𝑥2 −
 𝑦𝑦2  have misconceptions regarding the concept of finding the square of a number or 
expression.  These misconceptions may stem from students’ prior difficulty in 
recognizing that (−5)2  (-5)(-5) 25  or that −(5)2  −(5)(5)  -25. 
 

• Students who incorrectly equate rational expressions such as  𝑥𝑥
2− 6𝑥𝑥 + 9
𝑥𝑥 − 3

 with 𝑥𝑥 − 2𝑥𝑥 + 9 
or 𝑥𝑥 − 6𝑥𝑥 − 3 or 𝑥𝑥2 + 2𝑥𝑥 + 9, etc., have difficulty distinguishing between terms and 
factors.  
  

• Students may demonstrate difficulties in solving the equation √𝑥𝑥 − 1 = 𝑥𝑥 − 7.   Students 
may appropriately decide to square both sides of the equation and write (√𝑥𝑥 − 1 )2 = 
(𝑥𝑥 − 7)2 Student error may arise in writing  (√𝑥𝑥 − 1 )2 = 𝑥𝑥2 - 72, demonstrating 
misconceptions in squaring binomials (or multiplying) binomials.  
 

• The procedure for solving equations and inequalities are so similar.  As a result, 
students often forget to attend to precision when multiplying and dividing by a negative 
number when solving inequalities.   Students may correctly  solve equations such as 
−2𝑥𝑥 = 6  and find its solution to be 𝑥𝑥 = −3.    Misconceptions arise when students 
equate solving the equation with a similar inequality −2𝑥𝑥 ≤ 6 and incorrectly determine 
that 𝑥𝑥 ≤ −3.  The misconception can be addressed by encouraging students to verify 
solutions to equations and to inequalities.  
 

• Students often solve rational and radical equations without checking to determine if any 
solution may be erroneous.  Students should be encouraged to verify solutions. 

 
Functions  

• Students may erroneously interpret the notation 𝑔𝑔(3) to mean “𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 3".     
 

• Students often believe that all functions must use the symbols 𝑓𝑓, 𝑥𝑥, and 𝑦𝑦. 
 

• When graphing students may confuse the parts of the slope-equation form of a linear 
equation.  Students may incorrectly determine that the function 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 + 3

5
 has a 
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slope of  3
5
 and a y-intercept of 2.  Students may be relying on a procedural 

understanding that the y-intercept is always an integer and the slope or 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

 must be a 
fraction. 
 

• Students often incorrectly assume that the function 𝑓𝑓(𝑥𝑥 +  𝑘𝑘) where 𝑘𝑘 > 0 will result in 
a horizontal shift of the graph 𝑘𝑘 units to the right. 

 
Geometry  

• Students often think of congruence as “figures with the same shape and size.”  While 
this understanding is not incorrect, it is important to that the continually emphasize the 
link of congruence with rigid motions and show that rigid motions do in fact produce 
“figures with the same shape and size.” 
 

• Students may look at scale factor as the distance that is added on to the original 
distance.  Dilations where the center of dilation is a vertex of a figure can prove 
challenging because the sides of the pre-image and image overlap. 
 

• Students may have difficulty identifying the relevant sides in relationship to a given 
angle, especially If the triangle is not depicted in a typical position where its legs are 
horizontal and vertical.  For example, given ∆ 𝐴𝐴𝐴𝐴𝐴𝐴 below with right angle 𝐵𝐵, students 

may struggle to understand that sin𝐴𝐴 =   𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴  and that sin𝐴𝐴 ≠   𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 .  

 
 

 
 

• Students may have difficulty differentiating between the meaning of the statements  
∆ 𝐴𝐴𝐴𝐴𝐴𝐴 ≅  ∆ 𝐷𝐷𝐷𝐷𝐷𝐷  and ∆ 𝐴𝐴𝐴𝐴𝐴𝐴 ~ ∆ 𝐷𝐷𝐷𝐷𝐷𝐷.   While ∆ 𝐴𝐴𝐴𝐴𝐴𝐴 ≅  ∆ 𝐷𝐷𝐷𝐷𝐷𝐷 implies that AB = DE,  
∆ 𝐴𝐴𝐴𝐴𝐴𝐴 ~ ∆ 𝐷𝐷𝐷𝐷𝐷𝐷  does not imply that AB = DE. 

 
• Students often have difficulty differentiating among   𝐸𝐸𝐸𝐸�⃖���� , 𝐸𝐸𝐸𝐸�����⃗ , 𝐸𝐸𝐸𝐸�⃖���⃗ , and 𝐸𝐸𝐸𝐸����. 

 
Statistics and Probability  

• Students often use the word outlier inaccurately, failing to verify that it satisfies the 
necessary conditions.  Using terms such as unusual feature or data point can help 
students avoid using the term outlier when it is not appropriate. 
 

𝐵𝐵 

𝐴𝐴 𝐶𝐶 
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• Students commonly believe that any data that is collected should follow a normal
distribution.

• Students need to understand that association does not necessarily provide evidence for
cause and effect.
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