

Frameworks for Mathematics *Geometry*

West Virginia Board of Education 2018-2019

David G. Perry, President Miller L. Hall, Vice President Thomas W. Campbell, CPA, Financial Officer

> F. Scott Rotruck, Member Debra K. Sullivan, Member Frank S. Vitale, Member Joseph A. Wallace, J.D., Member Nancy J. White, Member James S. Wilson, D.D.S., Member

Carolyn Long, Ex Officio Interim Chancellor West Virginia Higher Education Policy Commission

Sarah Armstrong Tucker, Ed.D., Ex Officio Chancellor West Virginia Council for Community and Technical College Education

> **Steven L. Paine, Ed.D.,** Ex Officio State Superintendent of Schools West Virginia Department of Education

Geometry

Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). In the higher mathematics courses, students begin to formalize their geometry experiences from elementary and middle school, using definitions that are more precise and developing careful proofs. The standards for grades seven and eight call for students to see two-dimensional shapes as part of a generic plane (i.e., the *Euclidean plane*) and to explore transformations of this plane as a way to determine whether two shapes are congruent or similar. These concepts are formalized in the Geometry course, and students use transformations to prove geometric theorems. The definition of *congruence* in terms of rigid motions provides a broad understanding of this means of proof, and students explore the consequences of this definition in terms of congruence criteria and proofs of geometric theorems.

Students investigate triangles and decide when they are similar—and with this newfound knowledge and their prior understanding of proportional relationships, they define trigonometric ratios and solve problems by using right triangles. They investigate circles and prove theorems about them. Connecting to their prior experience with the coordinate plane, they prove geometric theorems by using coordinates and describe shapes with equations. Students extend their knowledge of area and volume formulas to those for circles, cylinders, and other rounded shapes. Finally, continuing the development of statistics and probability, students investigate probability concepts in precise terms, including the independence of events and conditional probability.

Modeling

Standards	Teacher Understandings	Resources	Student Understandings
Although the Modeling category does not include specific standards, the idea of using mathematics to model the world pervades all higher mathematics courses and should hold a significant place in instruction. Modeling is addressed first here to emphasize its importance in the higher mathematics curriculum	Modeling at the higher mathematics level goes beyond the simple application of previously constructed mathematics and includes real-world problems. True modeling begins with students asking a question about the world	Educators' Guide Organized by conceptual categories, this document provides exemplars to explain the content standards, highlight connections to the	 When students are presented with a real- world situation and challenged to ask a question, all sorts of new issues arise (e.g., Which of the quantities present in this situation are known, and which are
	around them, and	Mathematical Habits	unknown?).

				4
mat	thematics is then	of Mind , and	٠	Students decide on a
con	structed in the process of	demonstrate the		solution path that may
atte	empting to answer the	importance of		need to be revised. They
que	estion. Students may see	developing		make use of tools such as
whe	en trying to answer their	conceptual		calculators, dynamic
que	estion that solving an	understanding,		geometry software, or
equ	lation arises as a	procedural skill and		spreadsheets. They try to
nec	essity and that the	fluency, and		use previously derived
equ	ation often involves the	application. It		models (e.g., linear
spe	cific instance of knowing	highlights some		functions), but may find
the	output value of a	necessary		that a new formula or
fun	ction at an unknown	foundational skills		function will apply.
inpu	ut value.	from previous grade		
Mac	deling problems have an	levels.		
MOC	deling problems have an	Math TREE Online		
eter	ment of being genuine	Math TREE Unline		
pro	blems, in the sense that	Education Resources		
stud	dents care about	A curated set of		
ans	wering the question	aligned internet		
und	ler consideration. In	resources for WV		
mod	deling, mathematics is	middle and high		
use	d as a tool to answer	school math teachers.		
que	estions that students	Quantile Teacher		
real	lly want answered.	Assistant		
Stu	dents examine a problem	This tool is aligned to		
and	l formulate a	WV standards and is		
mat	thematical model (an	dosigned to help		
equ	iation, table, graph, or the	aducators locato		
like), compute an answer or	resources that can		
rew	rite their expression to	support instruction		
reve	eal new information,	support instruction		
inte	erpret and validate the	and identity skills		
resu	ults, and report out. This			

is a new approach for many	most relevant to	
teachers and may be	standards.	
challenging to implement		
but the effort should show		
students that mathematics is		
relevant to their lives From a		
nedagogical perspective		
modeling gives a concrete		
hasis from which to abstract		
the mathematics and often		
serves to motivate students		
to become independent		
learners		
learners.		
The important ideas		
surrounding rational		
functions, graphing, solving		
equations, and rates of		
change should be explored		
through the lens of		
mathematical modeling.		
Content by Cluster		
content by cluster		
Teachers must provide		
students opportunity to		
master each content		
standard. It is important to		
understand that neglecting		
grade level content		
standards will leave gaps in		
students' skills and		
understandings and will		

leave students unprepared for the challenges they face in later grades. A content plan must demonstrate a means by which students can be provided opportunity to address all grade-level content standards and to revisit and practice skills and strengthen understandings	
throughout the school year.	

Geometry

Standards	Teacher Understandings	Resources	Student Understandings
CONGRUENCE, PROOF, AND	A large portion of instruction	Educators' Guide	Students replace the
CONSTRUCTIONS	in the traditional Geometry	Organized by	imprecise definition that
Experiment with transformations in the	course is formed by the	conceptual	shapes are congruent
plane.	standards of the geometry	categories, this	when they "have the
M.GHS.1	conceptual category. Here,	document provides	same size and shape"
Know precise definitions of angle,	students develop the ideas	exemplars to explain	with a more
circle, perpendicular line, parallel line,	of congruence and similarity	the content	mathematically precise
and line segment, based on the	through transformations.	standards, highlight	one: Two shapes are
undefined notions of point, line,	They prove theorems, both	connections to the	congruent if there is a
distance along a line, and distance	with and without the use of	Mathematical Habits	sequence of rigid
around a circular arc.	coordinates. They explore	of Mind, and	motions in the plane that
	right-triangle trigonometry,	demonstrate the	takes one shape exactly
M.GH5.2	as well as circles and	importance of	onto the other.
Represent transformations in the plane	parabolas. Standard MHM#3,	developing	Students build more
using, for example, transparencies and	"Construct viable arguments	conceptual	precise definitions for
geometry software; describe			

transformations as functions that take	and critique the reasoning of	understanding	the rigid motions
points in the plane as inputs and give	others " plays a predominant	procedural skill and	(rotation reflection and
other points as outputs. Compare	role throughout the	fluoney and	(rotation, reflection, and
transformations that process distance		nuency, and	translation) based on
transformations that preserve distance	Geometry course.	application.	previously defined and
and angle to those that do not (e.g.,		Math TREE Online	understood terms such
translation versus horizontal stretch).		Education Resources	as point, line, between,
Instructional Note: Build on student	Content by Cluster	A curated set of	angle, circle,
experience with rigid motions from	Teachers must provide	aligned internet	perpendicular, and so
earlier grades. Point out the basis of	students opportunity to	resources for WV	forth.
rigid motions in geometric concepts,	master each content	middle and high	 Students show, using
(e.g., translations move points a	standard. It is important to	school math teachers	rigid motions, that
specified distance along a line parallel	understand that neglecting	school math teachers.	congruent triangles have
to a specified line; rotations move	grade-level content		congruent corresponding
objects along a circular arc with a	standards will leave gaps in	Quantila Tasahar	parts and that,
specified center through a specified	students' skills and	Quantile Teacher	conversely, if the
angle).	understandings and will	Assistant	corresponding parts of
	leave students unprepared	Inis tool is aligned to	two triangles are
Given a rectangle parallelogram	for the challenges they face	wy standards and is	congruent, then there is a
transzoid or regular polygon describe	in later grades. A content	designed to netp	sequence of rigid
the retations and reflections that carry	plan must demonstrate a	educators locate	motions that takes one
it ento itself. Instructional Note: Duild	means by which students can	resources that can	triangle to the other.
it onto itseli. Instructional Note: Build	be provided opportunity to	support instruction	 Students justify the
on student experience with rigid	address all grade-level	and identify skills	typical triangle
motions from earlier grades. Point out	content standards and to	most relevant to	congruence criteria such
the basis of rigid motions in geometric	revisit and practice skills and	standards.	as ASA, SAS, and SSS.
concepts, (e.g., translations move	strengthen understandings		 Students prove geometric
points a specified distance along a line	throughout the school year.		theorems.
parallel to a specified line; rotations			 Students develop a more
move objects along a circular arc with			nrecise mathematical
a specified center through a specified			definition of similarity
angle).			- Students explore the
			 Students explore the
			properties of dilations in

M.GHS.4		detail and develop an
Develop definitions of rotations,		understanding of the
reflections, and translations in terms		notion of scale factor.
of angles, circles, perpendicular lines,	٠	Students explore the
parallel lines, and line segments.		consequences of two
Instructional Note: Build on student		triangles being similar:
experience with rigid motions from		that they have congruent
earlier grades. Point out the basis of		angles and that their side
rigid motions in geometric concepts		lengths are in the same
(e.g., translations move points a		proportion.
specified distance along a line parallel	•	Students understand the
to a specified line; rotations move		trigonometric functions
objects along a circular arc with a		as relationships
specified center through a specified		completely determined
angle).		by angles. They further
0		their understanding of
M.GHS.5		these functions by
Given a geometric figure and a		investigating
rotation, reflection, or translation,		relationshins between
draw the transformed figure using, for		sine cosine and tangent
example, graph paper, tracing paper, or		by exploring the
geometry software. Specify a sequence		relationship between the
of transformations that will carry a		sine and cosine of
given figure onto another.		complementary angles:
Instructional Note: Build on student		and by applying their
experience with rigid motions from		knowledge of right
earlier grades. Point out the basis of		triangles to real-world
rigid motions in geometric concepts,		situations
(e.g., translations move points a		Students advance their
specified distance along a line parallel	•	Successful advance their
to a specified line; rotations move		knowledge of fight-
objects along a circular arc with a		triangle trigonometry by
_		applying trigonometric

specified center through a specified angle) Understand congruence in terms of rigid motions. M.GHS.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. Instructional Note: Rigid motions are at the foundation of the definition of congruence. Students reason from the basic properties of rigid motions (that they preserve distance and angle), which are assumed without proof. Rigid motions and their assumed properties can be used to establish the usual triangle congruence criteria, which can then be used to prove other theorems	 ratios in non-right triangles. Students use reasoning about similarity and trigonometric identities to derive the Laws of Sines and Cosines only in acute triangles, and use these and other relationships to solve problems. Students develop a definition of radian measure. Students derive the formula for the circle and parabola. Students continue to use coordinates to prove geometric theorems with algebraic technique, including the slope
M.GHS.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. Instructional Note: Rigid motions are at the foundation of the definition of congruence. Students	 criteria for parallel and perpendicular lines. Students develop the reasoning required to make sense of a proof and to communicate the essence of the proof to a peer. Students understand and use volume and area

reason from the basic properties of		formulas for curved
rigid motions (that they preserve		objects.
distance and angle), which are		
assumed without proof. Rigid motions		
and their assumed properties can be		
used to establish the usual triangle		
congruence criteria, which can then be		
used to prove other theorems.		
Explain how the criteria for triangle		
congruence (ASA_SAS_and SSS) follow		
from the definition of congruence in		
terms of rigid motions. Instructional		
Note: Rigid motions are at the		
foundation of the definition of		
congruence. Students reason from the		
hasic properties of rigid motions (that		
they preserve distance and angle)		
which are assumed without proof Rigid		
motions and their assumed properties		
can be used to establish the usual		
triangle congruence criteria which can		
then be used to prove other theorems		
Prove geometric theorems.		
M.GHS.9		
Prove theorems about lines and angles.		
Theorems include: vertical angles are		
congruent; when a transversal crosses		
parallel lines, alternate interior angles		
are congruent and corresponding		
angles are congruent; points on a		

perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. Instructional Note: Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format, and using diagrams without words. Students should be encouraged to focus on the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning.

M.GHS.10

Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. Instructional Note: Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format, and using diagrams without words. Students should be encouraged to focus on the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning. Implementation of this standard may

be extended to include concurrence of		
perpendicular bisectors and angle		
bisectors as preparation for M.GHS.36.		
M.GHS.11		
Prove theorems about parallelograms.		
Theorems include: opposite sides are		
congruent, opposite angles are		
congruent, the diagonals of a		
parallelogram bisect each other, and		
conversely, rectangles are		
parallelograms with congruent		
diagonals. Instructional Note:		
Encourage multiple ways of writing		
proofs, such as in narrative		
paragraphs, using flow diagrams, in		
two-column format, and using		
diagrams without words. Students		
should be encouraged to focus on the		
validity of the underlying reasoning		
while exploring a variety of formats for		
expressing that reasoning.		
Make geometric constructions.		
M.GHS.12		
Make formal geometric constructions		
with a variety of tools and methods		
(compass and straightedge, string,		
reflective devices, paper folding,		
dynamic geometric software, etc.).		
Copying a segment; copying an angle;		
bisecting a segment; bisecting an		
angle; constructing perpendicular		

lines, including the perpendicular		
bisector of a line segment; and		
constructing a line parallel to a given		
line through a point not on the line.		
Instructional Note: Build on prior		
student experience with simple		
constructions. Emphasize the ability to		
formalize and explain how these		
constructions result in the desired		
objects. Some of these constructions		
are closely related to previous		
standards and can be introduced in		
conjunction with them.		
M.GHS.13		
Construct an equilateral triangle, a		
square, and a regular hexagon		
inscribed in a circle. Instructional		
Note: Build on prior student		
experience with simple constructions.		
Emphasize the ability to formalize and		
explain how these constructions result		
in the desired objects. Some of these		
constructions are closely related to		
previous standards and can be		
introduced in conjunction with them.		
SIMILARITY, PROOF, AND		
TRIGONOMETRY		
Understand similarity in terms of		
similarity transformations.		
M.GHS.14		
Verify experimentally the properties of		

dilations given by a center and a scale		
factor.		
 a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 		
M.GHS.15		
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.		
M.GHS.16 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.		
Prove theorems involving similarity. M.GHS.17		
Prove theorems about triangles.		
Theorems include: a line parallel to		
one side of a triangle divides the other		

two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.		
M.GHS.18 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.		
Define trigonometric ratios and solve problems involving right triangles. M.GHS.19 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.		
M.GHS.20 Explain and use the relationship between the sine and cosine of complementary angles.		
M.GHS.21 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.		
Apply trigonometry to general triangles. M.GHS.22 Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an		

auxiliary line from a vertex		
perpendicular to the opposite side.		
M.GHS.23		
Prove the Laws of Sines and Cosines		
and use them to solve problems.		
Instructional Note: with respect to the		
general case of the Laws of Sines and		
cosine must be extended to obtue		
angles		
angles.		
M.GHS.24		
Understand and apply the Law of Sines		
and the Law of Cosines to find		
unknown measurements in right and		
non-right triangles. Instructional Note:		
With respect to the general case of the		
Laws of Sines and Cosines, the		
definitions of sine and cosine must be		
extended to obtuse angles.		
EXTENDING TO THREE DIMENSIONS		
Explain volume formulas and use them		
to solve problems.		
M.GHS.25		
Give an informal argument for the		
formulas for the circumference of a		
circle, area of a circle, volume of a		
cylinder, pyramid, and cone. Use		
dissection arguments, Cavalieri's		
principle, and informal limit		
arguments. Instructional Note:		
Informal arguments for area and		

volume formulas can make use of the way in which area and volume scale under similarity transformations: when one figure in the plane results from another by applying a similarity transformation with scale factor k, its area is k^2 times the area of the first. Similarly, volumes of solid figures scale by k³ under a similarity transformation with scale factor k.

M.GHS.26

Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. Instructional Note: Informal arguments for area and volume formulas can make use of the way in which area and volume scale under similarity transformations: when one figure in the plane results from another by applying a similarity transformation with scale factor k, its area is k^2 times the area of the first. Similarly, volumes of solid figures scale by k³ under a similarity transformation with scale factor k.

Visualize the relation between two dimensional and three-dimensional objects. **M.GHS.27** Identify the shapes of two-dimensional

cross-sections of three-dimensional

	objects, and identify three-dimensional objects generated by rotations of two-		
	dimensional objects.		
	situations.		
	M.GHS.28		
	and their properties to describe		
	objects (e.g., modeling a tree trunk or a human torso as a cylinder)		
	Instructional Note: Focus on situations		
	that require relating two- and three- dimensional objects, determining and		
	using volume, and the trigonometry of		
	general triangles.		
	CONNECTING ALGEBRA AND GEOMETRY THROUGH COORDINATES		
	Use coordinates to prove simple		
	geometric theorems algebraically. M.GHS 29		
	Use coordinates to prove simple		
	geometric theorems algebraically. (e.g.,		
	by four given points in the coordinate		
	plane is a rectangle; prove or disprove		
	that the point $(1, \sqrt{3})$ lies on the circle		
	the point (0, 2).		
	M.GHS.30		
	Prove the slope criteria for parallel and		
L	perpendicular lines and uses them to		

solve geometric problems. (e.g., Find the equation of a line parallel or perpendicular to a given line that passes through a given point.) Instructional Note: Relate work on parallel lines to work in High School Algebra I involving systems of equations having no solution or infinitely many solutions.		
M.GHS.31 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.		
M.GHS.32 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. This standard provides practice with the distance formula and its connection with the Pythagorean theorem.		
Translate between the geometric description and the equation for a conic section. M.GHS.33 Derive the equation of a parabola given a focus and directrix. Instructional Note: The directrix should be parallel to a coordinate axis.		

CIRCLES WITH AND WITHOUT		
COORDINATES		
Understand and apply theorems about		
circles.		
M.GHS.34		
Prove that all circles are similar.		
M.GHS.35		
Identify and describe relationships		
among inscribed angles, radii, and		
chords. Include the relationship		
between central, inscribed, and		
circumscribed angles; inscribed angles		
on a diameter are right angles; the		
radius of a circle is perpendicular to		
the tangent where the radius intersects		
the circle.		
M.GH5.30		
construct the inscribed and		
circumscribed circles of a triangle, and		
prove properties of angles for a		
quadritaterat inscribed in a circle.		
M.GHS.37		
Construct a tangent line from a point		
outside a given circle to the circle.		
Find arc lengths and areas of sectors of		
circles.		
M.GHS.38		
Derive using similarity the fact that the		
length of the arc intercepted by an		
angle is proportional to the radius. and		

define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Instructional Note: Emphasize the similarity of all circles. Reason that by similarity of sectors with the same central angle, arc lengths are proportional to the radius. Use this as a basis for introducing radian as a unit of measure. It is not intended that it be applied to the development of circular trigonometry in this course.		
Translate between the geometric description and the equation for a conic section. M.GHS.39 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.		
Use coordinates to prove simple geometric theorems algebraically. M.GHS.40 Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing		

the point (0, 2).) Instructional Note: Include simple proofs involving circles. Apply geometric concepts in modeling situations. M.GHS.41 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). Instructional Note: Focus on situations in which the analysis of circles is required.		
MODELING WITH GEOMETRY Visualize relationships between two dimensional and three-dimensional objects and apply geometric concepts in modeling situations. M.GHS.53 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).		
M.GHS.54 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).		
M.GHS.55 Apply geometric methods to solve design problems (e.g., designing an		

object or structure to satisfy physical		
constraints or minimize cost; working		
with typographic grid systems based		
on ratios).		

Statistics and Probability

Standards	Teacher Understandings	Resources	Student Understandings
APPLICATIONS OF PROBABILITY	In grades seven and eight,	Educators' Guide	Students develop an
Understand independence and	students learn some basic	Organized by	understanding of
conditional probability and use them	concepts related to	conceptual	conditional probability,
to interpret data.	probability, including chance	categories, this	experiencing two types of
M.GHS.42	processes, probability	document provides	problems: those in which
Describe events as subsets of a sample	models, and sample spaces.	exemplars to explain	the uniform probabilities
space (the set of outcomes) using	In higher mathematics, the	the content	attached to outcomes
characteristics (or categories) of the	relative-frequency approach	standards, highlight	lead to independence of
outcomes, or as unions, intersections,	to probability is extended to	connections to the	the outcomes, and those
or complements of other events ("or,"	conditional probability and	Mathematical Habits	in which they do not.
"and," "not").	independence, rules of	of Mind , and	• Students explore finding
	probability and their use in	demonstrate the	probabilities of
M.DID.43	finding probabilities of	importance of	compound events by
Understand that two events A and B	compound events, and the	developing	using the Addition Rule
are independent if the probability of A	use of probability	conceptual	and the general
of their probabilities and use this	distributions to solve	understanding,	Multiplication Rule.
of their probabilities, and use this	problems involving expected	procedural skill and	

characterization to determine if they	value (University of Arizona	fluency, and	•	Students use probability
are independent.	[UA] Progressions Documents	application.		models and probability
are independent. M.GHS.44 Recognize the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Instructional Note: Build on work with two-way tables from Algebra I to develop understanding of conditional probability and independence. M.GHS.45 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two- way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will	[UA] Progressions Documents 2012d). Building on probability concepts that began in the middle grades, students in the Geometry course use the language of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible and use probability to make informed decisions (National Governors Association Center for Best Practices, Council of Chief State School Officers [NGA/CCSSO]. Content by Cluster Teachers must provide students opportunity to master each content	application. <u>Math TREE Online</u> <u>Education Resources</u> A curated set of aligned internet resources for WV middle and high school math teachers. <u>Quantile Teacher</u> <u>Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards.		models and probability experiments to make decisions.
in tenth grade. Do the same for other	understand that neglecting			

Steven L. Paine, Ed.D. West Virginia Superintendent of Schools