

Frameworks for Mathematics *Grade 4*

West Virginia Board of Education 2018-2019

David G. Perry, President Miller L. Hall, Vice President Thomas W. Campbell, CPA, Financial Officer

> F. Scott Rotruck, Member Debra K. Sullivan, Member Frank S. Vitale, Member Joseph A. Wallace, J.D., Member Nancy J. White, Member James S. Wilson, D.D.S., Member

Carolyn Long, Ex Officio Interim Chancellor West Virginia Higher Education Policy Commission

Sarah Armstrong Tucker, Ed.D., Ex Officio Chancellor West Virginia Council for Community and Technical College Education

> **Steven L. Paine, Ed.D.,** Ex Officio State Superintendent of Schools West Virginia Department of Education

Grade 4

Instructional time should focus on three critical areas: (1) developing understanding and fluency with multi-digit multiplication and developing understanding of dividing to find quotients involving multi-digit dividends; (2) developing an understanding of fraction equivalence, addition and subtraction of fractions with like denominators, and multiplication of fractions by whole numbers; and (3) understanding that geometric figures can be analyzed and classified based on their properties, such as having parallel sides, perpendicular sides, particular angle measures, and Students also work toward fluency in addition and subtraction within 1,000,000 using the standard algorithm.

Operations and Algebraic Thinking

Standards	Teacher Understandings	Resources	Student Understandings
Use the four operations with whole numbers to solve problems. M.4.1 Interpret a multiplication equation as a comparison (e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations. M.4.2 Multiply or divide to solve word problems involving multiplicative comparison (e.g., by using drawings and equations with a symbol for	It is important for teachers to understand that neglecting any grade- level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards. Students need to understand if the value in an equation or an expression can change (or vary), we replace it with a symbol called a variable. Remember, an equation contains an equal sign and an expression does not contain an equal sign.	The following provides resources for teachers and students: <u>Math TREE Online</u> <u>Education Resources</u> A curated set of aligned internet resources for WV elementary teachers <u>Quantile Teacher</u> <u>Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills	 Develop an understanding of the order and meaning of numbers in multiplicative comparison problems. Know multiplication terminology: The numbers multiplied are called factors. The answer is called a product. Know division terminology: The number divided is called the dividend; what it is divided by is the divisor; the

the unknown number to	Work from inner to outer grouping	most relevant to		result or answer is
represent the problem) and	symbols.	standards.		called the quotient.
distinguish multiplicative			•	Understand
comparison from additive	When working with expressions do not	Illustrative		multiplication is
comparison.	insert equal signs changing the	Mathematics		commutative: a x h =
-	expression into an equation.	http://www.illustrative		by a and acception
M.4.3		mathmatics.org		D X a and associative:
Solve multi-step word	The word "of" implies multiplication.	This website provides		(a x b) x c = a x (b x c);
problems posed with whole		teachers with learning		however, division is
numbers and having whole-	Be aware students have difficulty	tasks that develop the		not.
number answers using the four	understanding the order and meaning in	WV College- and	•	There are several
operations including	multiplicative comparison problems:	Career- Readiness		types of
problems in which remainders	which quantity (factor) is being	Standards for		Multiplication and
must be interpreted	multiplied, which number (factor) tells	Mathematics and that		Division problems
Boprosont those problems	how many times, and which number is	support to oxtond the		
using equations with a letter	the product.	topport to extend the		(Equal groups; Arrays
using equations with a tetter		knowledge of		or Area; Compare).
	Additive comparison problems are	knowledge of	٠	Understand not all
quantity. Assess the	different from multiplicative comparison	mathematics.		division problems
reasonableness of answers	problems.			result in a whole
using mental computation and		Granam Fletcher Site G		number answer and
estimation strategies including	Multiplicative comparison problems	Fletchy		be able to interpret
rounding.	come in 3 types:	<u> http://www.giletchy.c</u>		the remainder
	Unknown Product	<u>om</u>		
Gain familiarity with factors	Unknown Group Sizo	This website includes	•	Multiplying two
and multiples.	Olikilowii Gloup Size	learning progression		numbers does not
	 Number of Groups Unknown 	videos related to		always result in a
M.4.4		counting and 3-Act		product larger than
Find all factor pairs for a	When a problem asks the question "How	tasks that may be		the factors. When
whole number in the range 1–	many in each group?" it is an example of	connected to the WV		students begin
100, recognize that a whole	partitive or fair-share division. If a	College- and Career-		multiplying by
number is a multiple of each	problem asks "How many groups?" it is	Readiness Standards		numbers less than 1
of its factors. Determine	classified as quotitive or measurement	for Mathematics.		(fractions)) the
whether a given whole number	division.			(nactions)) the
in the range 1–100 is a multiple		Inside Mathematics		multiplication
of a given one-digit number.				always results in a

Determine whether a given Using tape diagrams or bar models can <u>http://insidemathen</u>	na	larger number"
whole number in the range 1- help students visualize and solve <u>tics.org</u>		concept is no longer
100 is prime or composite. multiplication and division word Inside Mathematics i	S	true.
problems. a nationally		• "More than" can be
Generate and analyze recognized multimed	lia	both additive (5 more
patterns. Unknow Website for educator	s	than a number) and
n around the world.		unan a number) and
M.4.5 Product Araceli 36 Books This site includes		multiplicative (3
Generate a number or shape	s.	times a number)
pattern that follows a given and performance	<i>.</i>	 Find all factor pairs
rule. Identify apparent asks.		for whole numbers
features of the pattern that		from 1 to 100.
were not explicit in the rule Unknow Kiara		 Understand the
itself. (e.g., Given the rule "Add n https://illuminationg	s.n	difference between
3" and the starting number 1.		Prime (exactly 2
generate terms in the resulting		unique whole
sequence and observe that the Number project designed by		
terms appear to alternate		number factors) and
between odd and even Groups New How many times as large?		Composite (more
numbers. Explain informally		than 2 factors).
why the numbers will continue in a computer applets.		 Know that "1" is
to alternate in this way.)		neither Prime nor
En source attende of the Math Coach's Corner		composite.
Encourage representation of the Donna Boucher		Be able to search
remainder in a division problem in a http://www.mathcoa		systematically to find
manner consistent with the content of hscorner com		all factor pairs by
the problem. For example, in a simple This site is a blog by		checking if 2 is 2
alvision problem, $100 \div 33 = 3R1$ is not as a biog by		
accurate as 100 ÷ 33 = 3 $\frac{1}{33}$ or by saying mathematics coach		factor, then 3, then 4,
"When we divide 100 by 33, the quotient Her blog includes		and so on until they
is 3 with 1 left over." Writing the mathematical		find a "reversal" in
equation as 100 = 33 x 3 + 1 is also background on		the pairs.
accurate. Students need to be able to		• Know that not all
interpret the remainder: If 250 students mathematical tasks		prime numbers are
travel on buses that hold /5 students		

6 $6 \times 700 = 6 \text{ groups of 7} 6 \text{ groups of 7} 6 \text{ groups of 7} 12 \text{ tens = 120} 6 \times 9 = 54$ each: $250 \div 45 = 5\frac{25}{45}$. The solution needs to be interpreted as 6 buses are needed. Otherwise, you will have 25 unhappy students with no bus to ride! The chart above depicts an area model for 6 X 729 with 729 written as 700 + 20 + 9. Students can use area models to represent various multiplication situations. The rows can represent the equal groups of objects in the situation, and students then imagine that the objects lie in the squares forming an array. With larger numbers, such array models become too difficult to draw, so students can make sketches of rectangles and then label the resulting product as the number of things or	odd (2 is the only even prime number.) • Larger numbers do not necessarily have more factors.
students can make sketches of rectangles and then label the resulting product as the number of things or square units.	
Math drawings and base-ten blocks support the development of <i>extended</i> <i>multiplication facts</i> . The ability to find products such as these is important when variations of the standard algorithm are used for multi-digit	

multiplica	ation, as described in the following
examples	S
Left to r	ight, showing the
partial p	products.
729	
× 6	Thinking:
4200	6 × 7
	hundreds
120	6 × 2 tens
54	6 × 9
4374	
	Right to left, showing
	the partial products.
	729
	× 6
	54 6 × 9
	120 6 × 2 tens
	4200 6 × 7
	hundreds
	/.27/
	43/4

Rithalli	ght to left, recording e newly composed tens ind hundreds below the ne. 729 × 6 15 4224 4374 Note: The 15 is when the regroupin was recorded. ctangular arrays	Or e re ng	
	60	+ 5	
2	$20 \times 60 =$	20 × 5 =	
0	2 tens times 6	$2 \text{ tens} \times 5 =$	
	tens =	10 tens = 100	
+	12 nunareas =		
	1200		

7	7 × 60 = 7 × 6 tens = 42 tens = 420	7 × 5 = 35
Par	tial products	
	× 27 35 7 × 5	
	420 7 × 6 tens 100 2 tens × 5 200 2 tens × 6	
	tens 1755	
Ger con div fino wit sm	eral methods for mi putation include d dend into like bas ing the quotient uni the largest unit and ller units.	ulti-digit division lecomposing the e-ten units and t by unit, starting continuing on to

Number and Operations in Base Ten

Standards	Teacher Understandings	Resources	Student Understandings
Generalize place value understanding for multi-digit whole numbers. M.4.6 Recognize that in a multi-digit whole number, a digit in one place represents	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. Therefore,	The following resources provide teachers with resources for teachers and students:	 Know place value positions Be able to expand numerals

ten times what it represents in the	students will be unprepared	Math TREE Online	Round multi-digit
place to its right (e.g., recognize that	for the challenges they face	Education Resources	whole numbers
700 ÷ 70 = 10 by applying concepts of	in later grades.	A curated set of aligned	Stack numbers
place value and division).		internet resources for	vertically to see
	Students use the	WV elementary teachers	relationships when
M.4.7	Mathematical Habits of		rounding
Read and write multi-digit whole	Mind to interact with the	<u>Quantile Teacher</u>	
numbers using base-ten numerals,	grade level content	<u>Assistant</u>	• Work from inner to
number names, and expanded form.	standards. The teacher	This tool is aligned to	outer grouping
Compare two multi-digit numbers	needs to craft instructional	WV standards and is	symbols.
based on meanings of the digits in each	tasks that connect the	designed to help	 When working with
place, using >, = and < symbols to	Mathematical Habits of	educators locate	expressions do not
record the results of comparisons.	Mind to the content	resources that can	insert equal signs
	standards.	support instruction and	changing the
M.4.8		identify skills most	expression into an
Use place value understanding to	To represent multiplication	relevant to standards.	equation
round multi-digit whole numbers to any	instruct students to use		The word "of" implies
place.	equations, rectangular	Illustrative Mathematics	me word of implies
	arrays and/or area models.	<u>http://www.illustrative</u>	multiplication.
Use place value understanding and		<u>mathmatics.org</u>	
properties of operations to perform	Instruct students to use	This website provides	
multi-digit arithmetic.	commas to assist in reading	teachers with learning	
	and writing numerals.	tasks that develop the	
M.4.9		WV College- and Career-	
Fluently add and subtract multi-digit		Readiness Standards for	
whole numbers using the standard		Mathematics and that	
algorithm.		support the extension of	
		the teacher's content	
M.4.10		knowledge of	
Multiply a whole number of up to four		mathematics.	
digits by a one-digit whole number,			
multiply two two-digit numbers, using		Graham Fletcher Site G	
strategies based on place value and the		Fletchy	
properties of operations and illustrate		http://www.gfletchy.co	
and explain the calculation by using		<u>m</u>	

		1
equations, rectangular arrays and/or	This website includes	
area models.	learning progression	
	videos related to	
M.4.11	counting and 3-Act tasks	
Find whole-number quotients and	that may be connected	
remainders with up to four-digit	to the WV College- and	
dividends and one-digit divisors, using	Career- Readiness	
strategies based on place value, the	Standards for	
properties of operations and/or the	Mathematics	
relationship between multiplication	mathematics.	
and division Illustrate and explain the	Insido Mathomatics	
calculation by using equations	http://insidomathomati	
rectangular arrays and/or area models	<u>intip.//insidemathemati</u>	
rectangular arrays and/or area models.	<u>CS.018</u>	
	Inside Mathematics is a	
	nationally recognized	
	multimedia website for	
	educators around the	
	world. This site includes	
	videos, learning tasks,	
	and performance	
	assessment tasks.	
	NCTM Illuminations	
	https://illuminations.nc	
	tm.org/	
	Illuminations is a	
	project designed by	
	NCTM. The side includes	
	lessons, activities and	
	computer applets	
	Math Coach's Corner	
	Donna Boucher	
	http://www.mathcoache	
1	L COTHER.COM	

	This site is a blog by an elementary mathematics coach. Her blog includes mathematical background on concepts, as well as, mathematical tasks.
--	---

Number and Operations Fractions

Standards	Teacher Understandings	Resources	Student Understandings
Extend understanding of fraction equivalence and ordering. M.4.12 Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards. Help student make sense of writing mixed numbers as unit fractions. Visual models such as the one below support student understanding.	The following resources provide teachers with resources for teachers and students: <u>Math TREE Online Education Resources</u> A curated set of aligned internet resources for WV elementary teachers <u>Quantile Teacher</u> <u>Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and	 Understand a fraction, ^{a,}/_b as a sum of the unit fractions, ¹/_b. Write and use unit fractions. Understand that every fraction is composed of unit fractions. A mixed number is the sum of a whole number and a fraction. Know how to convert mixed numbers to fractions.

M.4.13 Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $\frac{1}{2}$). Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, = or <, and justify the conclusions by using a visual fraction model. Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. M.4.14 Understand the fraction a/b, with a > 1, as the sum of a of the fractions

Use money or base 10 blocks to help students understand decimal notation for denominators of 10 or 100.

<u>A Common Misconception</u>: Students sometimes treat decimals as whole numbers when making comparisons of two decimals, ignoring place value. For example, they may think that 0.2 < 0.07 simply because 2 < 7.

Students sometimes think, "The longer the decimal number, the greater the value." For example, they may think that 0.03 is greater than 0.3.

Students will need ample opportunities to become familiar with new units of measure. In prior years, work with units was limited to units such as pounds, ounces, grams, kilograms, and liters, and students did not convert measurements.

Inside Mathematics http://insidemathemati

<u>cs.org</u>

1/b.

a. Understand

addition and

subtraction of fractions	Inside Mathematics is a	
as joining and	nationally recognized	
separating parts	multimedia website for	
referring to the same	educators around the	
whole.	world. This site includes	
b. Decompose a	videos, learning tasks,	
fraction into a sum of	and performance	
fractions with the same	assessment tasks.	
denominator in more		
than one way, recording	NCTM Illuminations	
each decomposition by	<u>https://illuminations.nc</u>	
an equation and justify	<u>tm.org/</u>	
decompositions by	Illuminations is a	
using a visual fraction	project designed by	
model (e.g., 3/8 = 1/8 +	NCTM. The side includes	
1/8 + 1/8; 3/8 = 1/8 +	lessons, activities and	
2/8; 2 1/8 = 1 + 1 + 1/8 =	computer applets.	
8/8 + 8/8 + 1/8).		
c. Add and subtract	Math Coach's Corner	
mixed numbers with like	Donna Boucher	
denominators by	<u>http://www.mathcoachs</u>	
replacing each mixed	<u>corner.com</u>	
number with an	This site is a blog by an	
equivalent fraction	elementary	
and/or by using	mathematics coach. Her	
properties of operations	blog includes	
and the relationship	mathematical	
between addition and	background on	
subtraction.	concepts; as well as,	
d. Solve word	mathematical tasks.	
problems involving		
addition and		
subtraction of fractions		
referring to the same		

denominators by using		
visual fraction models		
and equations to		
represent the problem.		
· · · · · · · · · · · · · · · · · · ·		
M.4.15		
Apply and extend		
previous		
understandings of		
multiplication to		
multiply a fraction by a		
whole number		
whole humber.		
a. Understand a		
multiple of 1/h (or		
multiple of 1/b, (e.g.,		
use a visual fraction		
model to represent 5/4		
as the product $5 \times (1/4)$,		
recording the		
conclusion by the		
equation 5/4 = 5 × (1/4)).		
b. Understand a		
multiple of a/b as a		
multiple of 1/b, and use		
this understanding to		
multiply a fraction by a		
whole number (e.g., use		
a visual fraction model		
to express 3 × (2/5) as 6		
× (1/5), recognizing this		
product as 6/5. In		
general, n × (a/b) = (n ×		
a)/b).		
c. Solve word		
problems involving		

multiplication of a fraction by a whole number by using visual fraction models and equations to represent	
fraction by a whole number by using visual fraction models and equations to represent	
number by using visual fraction models and equations to represent	
fraction models and equations to represent	
equations to represent	
the problem (e.g., If	
each person at a party	
will eat 3/8 of a pound	
of roast beef, and there	
will be 5 people at the	
party, how many pounds	
of roast beef will be	
needed? Between what	
two whole numbers	
does your answer lie?).	
Understand decimal	
notation for fractions,	
and compare decimal	
fractions.	
M.4.16	
Express a fraction with	
denominator 10 as an	
equivalent fraction with	
denominator 100, and	
use this technique to	
adu two fractions with	
denominators 10 and	
$100 (a \sigma_{\rm express}^{2})/10 as$	
30/100 and add $3/10 +$	
$\frac{1}{100} = \frac{3}{100}$	
Instructional Note:	
Students who can	

generate equivalent		
fractions can develop		
strategies for adding		
fractions with unlike		
denominators in		
general. But addition		
and subtraction with		
unlike denominators in		
general is not a		
requirement at this		
grade.		
NA / 47		
M.4.17		
fractions with		
denominators 10 or 100		
$(e \sigma rewrite 0.62 as$		
62/100 describe a		
length as 0.62 meters:		
locate 0.62 on a number		
line diagram).		
M.4.18		
Compare two decimals		
to hundredths by		
reasoning about their		
size. Recognize that		
comparisons are valid		
only when the two		
decimals refer to the		
same whole. Record the		
with the symbols $\sim -cr$		
< and justify the		
conclusions hy using a		

visual model.			
	visual model.		

Measurement and Data

Standards	Teacher Understandings	Resources	Student Understandings
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. M.4.19 Know relative sizes of measurement units within a system of units, including the metric system (km, m, cm; kg, g; l, ml), the standard system (lb, oz), and time (hr, min, sec.). Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two- column table. (e.g., Know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),)	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards.	The following is a list of resources for teachers and students: <u>Math TREE Online</u> <u>Education Resources</u> A curated set of aligned internet resources for WV elementary teachers <u>Quantile Teacher</u> <u>Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards.	 Understand how to record information on a line plot. Have experience with benchmark angles. Transfer understanding that a 360° rotation about a point makes a complete circle to recognize and sketch angles that measure approximately 90° and 180°. This understanding is extended to recognize and sketch angles that measure
M.4.20 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals and problems that require expressing measurements given in a larger unit in	Work with angle measures connects to and supports addition of fractions. Students need to gain experience measuring angles prior to working with	Illustrative Mathematics http://www.illustrative mathmatics.org This website provides teachers with learning tasks that develop the WV College- and Career- Readiness Standards for	 30°. Use appropriate terminology (acute, right, and obtuse) to describe angles and rays (perpendicular).

terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. M.4.21 A pply the area and perimeter formulas for rectangles in real world and mathematical problems by viewing the area formula as a multiplication	word problems involving angle measurement. Students need to understand geometric terms prior to solving word problems. When a new concept is introduced, concrete	Mathematics and support that extends the teacher's content knowledge of mathematics. Graham Fletcher Site G Fletchy http://www.gfletchy.co m	 Recognize angle measure as additive and use this to solve addition and subtraction problems to find unknown angles on a diagram.
find the width of a rectangular room given the area of the flooring and the length.) Represent and interpret data. M.4.22 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots (e.g., from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection). Geometric measurement: understand concepts of angle and measure angles. M.4.23 Recognize angles as geometric shapes that are formed wherever two rays	Base-ten blocks are a useful tool when developing an understanding of equivalent representations. Previously, students built a conceptual understanding of multiplication with whole numbers as they applied multiple strategies to compute and solve problems. Students can continue to use different strategies and methods learned previously—as long as the methods are <i>efficient</i> .	learning progression videos related to counting and 3-Act tasks that may be connected to the WV College- and Career- Readiness Standards for Mathematics. Inside Mathematics http://insidemathemati CS.org Inside Mathematics is a nationally recognized multimedia website for educators around the world. This site includes videos, learning tasks, and performance assessment tasks. NCTM Illuminations https://illuminations.nc tm.org/	

share a common endpoint, and	Illuminations is a	
understand concepts of angle	project designed by	
measurement:	NCTM. The site includes	
a. An angle is measured with	lessons, activities and	
reference to a circle with its center at	computer applets.	
the common endpoint of the rays, by		
considering the fraction of the circular	Math Coach's Corner	
arc between the points where the two	Donna Boucher	
rays intersect the circle. An angle that	http://www.mathcoachs	
turns through 1/360 of a circle is called	<u>corner.com</u>	
a "one-degree angle," and can be used	This site is a blog by an	
to measure angles.	elementary	
b. An angle that turns through b	mathematics coach. Her	
one-degree angles is said to have an	blog includes	
angle measure of b degrees.	mathematical	
	background on	
M.4.24	concepts; as well as,	
Measure angles in whole-number	mathematical tasks.	
degrees using a protractor and sketch		
angles of specified measure.		
M.4.25		
Recognize angle measure as additive.		
When an angle is decomposed into		
non-overlapping parts, the angle		
measure of the whole is the sum of the		
angle measures of the parts. Solve		
addition and subtraction problems to		
find unknown angles on a diagram in		
real world and mathematical problems		
(e.g., by using an equation with a		
symbol for the unknown angle		
measure).		

Geometry

Standards	Teacher Understandings	Resources	Student Understandings
Draw and identify lines and angles and classify shapes by properties of their lines and angles. M.4.26 Draw points, lines, line segments, rays, angles (right, acute, obtuse) and perpendicular and parallel lines. Identify these in two-dimensional figures. M.4.27 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. M.4.28 Recognize a line of symmetry for a two- dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards. Geometric figures can be analyzed and classified based on their properties, such as having parallel sides, perpendicular sides, particular angle measures, and symmetry. For the first time, students in grade four are exposed to	The following is a list of resources for teachers and students: <u>Math TREE Online</u> <u>Education Resources</u> A curated set of aligned internet resources for WV elementary teachers <u>Quantile Teacher</u> <u>Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards. <u>Illustrative Mathematics</u> <u>http://www.illustrative</u> <u>mathmatics.org</u> This website provides teachers with learning tasks that develop the WV College- and Career- Readiness Standards for Mathematics and that support the extension	 Draw and identify right, acute, and obtuse angles. Classify two- dimensional figures based on specific angle measurements. Use the benchmark angles of 90°, 180°, and 360°to approximate the measurement of angles. Know that right triangles (triangles with one right angle) can be a category for classification, with subcategories—for example, an isosceles right triangle has two or more congruent sides and a scalene right triangle has no congruent sides.

the construction of the second	afa tha ta a d	
the concepts of rays, angles,	ots the teacher's	
and perpendicular and	content knowledge of	
parallel lines.	mathematics	
paratter times.	mathematics.	
It is holpful to provide	Current Flat in State	
It is neipful to provide	Graham Fletcher Site G	
	Fletchy	
 segment 	http://www.gfletchy.co	
←→ line	m	
ray	 This website includes	
	loarning progression	
parallel lines	ieanning progression	
↓↓ ·	videos related to	
†	counting and 3-Act tasks	
← perpendicular lines	that may be connected	
* -	to the WV College- and	
acute angle	Career- Readiness	
	Standards for	
• obtuse angle	Mathematics	
students with a visual	Mathematics.	
reminder of examples of		
points, line segments, lines,	Inside Mathematics	
angles narallelism and	<u>http://insidemathemati</u>	
angles, parallelish, and	cs.org	
perpendicularity. Students	Inside Mathematics is a	
should be exposed to all of	nationally recognized	
these representations in	nationally recognized	
different orientations. They	multimedia website for	
could draw the	educators around the	
roprosontations in different	world. This site includes	
representations in unierent	videos, learning tasks	
orientations and decide if	and performance	
all of the drawings are	and performance	
correct. They also need to	assessment lasks.	
see and draw the range of		
angles that are acute and	NCTM Illuminations	
ohtuse	<u>https://illuminations.nc</u>	
	tm.org/	
The dimensional Car	Illuminations is a	
iwo-aimensional figures	project designed by	
may be classified according	project designed by	

to characteristics, such as the presence of parallel or perpendicular lines or by angle measurements. Students may use transparencies with lines drawn on them to arrange two lines in different ways to determine that the two lines might intersect at one point or might never intersect, thereby understanding the notion of parallel lines. Further investigations may be initiated with geometry software. These types of explorations may lead to a	NCTM. The site includes lessons, activities and computer applets. Math Coach's Corner Donna Boucher http://www.mathcoachs corner.com This site is a blog by an elementary mathematics coach. Her blog includes mathematical background on concepts; as well as, mathematical tasks.	
software. These types of explorations may lead to a discussion on angles.		

Steven L. Paine, Ed.D. West Virginia Superintendent of Schools