

Frameworks for Mathematics *Grade 5*

West Virginia Board of Education 2018-2019

David G. Perry, President Miller L. Hall, Vice President Thomas W. Campbell, CPA, Financial Officer

> F. Scott Rotruck, Member Debra K. Sullivan, Member Frank S. Vitale, Member Joseph A. Wallace, J.D., Member Nancy J. White, Member James S. Wilson, D.D.S., Member

Carolyn Long, Ex Officio Interim Chancellor West Virginia Higher Education Policy Commission

Sarah Armstrong Tucker, Ed.D., Ex Officio Chancellor West Virginia Council for Community and Technical College Education

> **Steven L. Paine, Ed.D.,** Ex Officio State Superintendent of Schools West Virginia Department of Education

Grade 5

Instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; (3) developing an understanding of volume; solving problems using the coordinate plane.

Standards	Teacher Understandings	Resources	Student Understandings
Write and Interpret numerical expressions. M.5.1	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in	The following is a list of resources for teachers and students:	 Students need to understand that they should work with the innermost grouping
Use parentheses, brackets or braces in numerical expressions and evaluate expressions with these symbols.	students' skills and understandings. This will leave students unprepared for the challenges they face	Math TREE Online Education Resources A curated set of aligned, internet	symbols first and that some operations are done before
M.5.2 Write simple expressions that record calculations with numbers and interpret numerical expressions	in later grades.	resources for WV elementary math teachers	others, even if grouping symbols are not included.
without evaluating them. (e.g., Express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.)	Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of	Quantile Teacher Assistant This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and	 If students use the mnemonic phrase "Please Excuse My Dear Aunt Sally" to remember the order of operations (Parentheses)

Operations and Algebraic Thinking

Analyze patterns and relationships	Mind to the content	identify skills most	E xponents,
	standards.	relevant to standards.	Multiplication,
M.5.3	Mark from inner to outor		Division, Addition,
Generate two numerical patterns using	work from inner to outer	Illustrative	S ubtraction) they
two given rules. Identity apparent	grouping symbols.	http://www.illustrativo	need to know
terms Form ordered pairs consisting of	When working with	mathmatics org	multiplication is not
corresponding terms from the two	expressions do not insert	This website provides	always performed
patterns, and graph the ordered pairs	equal signs. This changes	teachers with learning	before division or
on a coordinate plane. (e.g., Given the	the expression into an	tasks that develop the	addition before
rule "Add 3" and the starting number 0	equation.	WV College- and	subtraction
and given the rule "Add 6" and the	The word "of" implies	Career-Readiness	Subtraction.
starting number 0, generate terms in	multiplication	Standards for	Multiplication and
the resulting sequences and observe	mattipiteation.	Mathematics,	division are done at
twice the corresponding terms in the	Indicate the mnemonic	teacher's content	the same time (in
other sequence. Explain informally why	could be read " P lease	knowledge of	order, from left to
this is so.)	Excuse Dear My Sally Aunt"	mathematics.	right). Addition and
	because D ivision may be		subtraction are also
	performed before Multiplication if working left	Graham Fletcher Site G	done at the same
	to right Similarly if all	Fletchy	time (in order, from
	multiplication and division	http://www.gfletchy.co	left to right).
	has been performed.	<u>m</u> This wobsite includes	• Students need a lot
	S ubtraction might be	learning progression	of experience with
	completed before A ddition	videos related to	writing multiplication
	in an expression when	counting, and 3-Act	in different ways.
	working left to right.	tasks that may be	Multiplication may be
	Twice a number indicator to	connected to the WV	indicated with a
	multiply by 2	College- and Career-	raised dot (e σ 4.5) a
		Readiness Standards	raised cross symbol
	Students need help and	for Mathematics.	$(0 \sigma / x 5) \text{ or }$
	practice remembering the	Inside Mathematics	$(c.g., 4 \land 5), 01$
	convention that we	וווסועב ויומנווכווומנונס	parentneses (e.g.,

typically write a rather than 1×a or 1a, especially in expressions such as a+3a. (1a = a is an example of the Multiplicative Identity Property.) Numerals are placed in front of a variable and are called coefficients. The accepted notation is "3a". It is considered incorrect or non-standard to indicate multiplication as "a3". Generally, in grade five, when a rule is used the relationship between the points is linear.	http://insidemathemat ics.org Inside Mathematics is a nationally recognized multimedia website for educators around the world. This site includes videos, learning tasks, and performance assessment tasks. NCTM Illuminations https://illuminations.n ctm.org/ Illuminations is a project designed by NCTM. The site includes lessons, activities, and computer applets. Math Coach's Corner Donna Boucher http://www.mathcoach scorner.com This site is a blog by an elementary mathematics coach. Her blog includes mathematical background on concepts as well as mathematical tasks.	4(5) or (4)(5)). Note that the raised cross symbol is not the same as the letter x and may be confused with the variable "x," so care should be taken when writing or typing this symbol. Students need to be exposed to all three notations and should be challenged to understand that all are useful.
---	--	--

Number and Operations in Base Ten

Standards	Teacher Understandings	Resources	Student Understandings
Understand the place value system. M.5.4 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. M.5.5 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. M.5.6 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names and expanded form (e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards. When a new concept is introduced, concrete objects help students visualize the meaning. In grade five, students extend	The following is a list of resources for teachers and students: Math TREE Online Education Resources A curated set of aligned, internet resources for WV elementary math teachers Quantile Teacher Assistant This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards. Illustrative Mathematics http://www.illustrative mathmatics.org This website provides	 Students need to understand the size of decimal numbers and relate them to common benchmarks such as 0, 0.5 (0.50 and 0.500), and 1. Working with decimals will be challenging if students are not able to read, write, and represent multi-digit numbers. Teachers can use base-ten blocks and money to provide meaning for decimals. For example, dimes can represent tenths and, pennies represent hundredths. Compare tenths to tenths, hundredths to hundredths, and thousandths to
 × (1/10) + 9 × (1/100) + 2 × (1/1000)). b. Compare two decimals to thousandths based on meanings of the digits in each place using > = and 	their understanding of the base-ten system from whole numbers to decimals, focusing on the relationship	teachers with learning tasks that develop the WV College- and Career- Readiness Standards for	thousandths. (0.57 > 0.567; when both are expressed as

symbols to record the results of	between adjacent place	Mathematics,	thousandths it is
comparisons.	values, how numbers	supporting the teacher's	easier to see: 0.570 >
	compare, and how numbers	content knowledge of	0.567).
M.5.7	round for decimals to	mathematics.	Prior work has shown
Use place value understanding to	thousandths. Before		the longer a number.
round decimals to any place.	considering the relationship	Graham Fletcher Site G	the greater its value
	of decimal fractions,	Fletchy	for oxample 1224 >
Perform operations with multi-digit	students reason that in	<u>http://www.gfletchy.co</u>	FG7 Desimal notation
whole numbers and with decimals to	multi-digit whole numbers,	<u>m</u>	567. Decimal notation
hundredths.	a digit in one place	This website includes	does not follow this
	represents 10 times what it	learning progression	same rule, as in 0.1234
M.5.8	represents in the place to	videos related to	< 0.567.
Fluently multiply multi-digit whole	its right (30 is 10 times	counting, and 3-Act	• The extension from
numbers using the standard algorithm.	greater than 3) and 1/10 of	tasks that may be	one-digit divisors to
	what it represents in the	connected to the WV	two-digit divisors is a
M.5.9	place to its left (7 is 1/10 of	College- and Career-	major milestone along
Find whole-number quotients of whole	70).	Readiness Standards for	the way to reaching
numbers with up to four-digit dividends	Daga tan blacka can ba a	Mathematics.	fluency with the
and two-digit divisors, using strategies	Base-tell blocks call be a		standard algorithm in
based on place value, the properties of	powerful tool for seeing	Inside Mathematics	grade six.
operations and/or the relationship	For instance, if a "flat" is	<u>nttp://insidemathemati</u>	• When adding decimals.
Illustrate and explain the calculation by	used to represent 1 (the	<u>Ls.org</u>	students must
licustrate and explain the calculation by	whole or unit) then a "stick"	nationally recognized	understand they add
and/or area models	represents 1/10 and a small	multimodia wobsite for	tenths to tenths and
and/or area models.	"cube" represents 1/100 As	aducators around the	hundrodths to
M 5 10	shown below, students can	world This site	hundredths When
Add subtract multiply and divide	be challenged to make	includes videos	students add in a
decimals to hundredths using concrete	sense of a number like 0.23	learning tasks and	students add in a
models or drawings and strategies	as being represented by	performance	vertical format
based on place value, properties of	both 2/10 + 3/100 and	assessment tasks.	(numbers below each
operations, and/or the relationship	23/100.		other), it is important
between related operations, relate the		NCTM Illuminations	that they write digits
strategy to a written method and	Previously, students built a	https://illuminations.nc	with the same place
explain the reasoning used.	conceptual understanding	tm.org/	

of multiplication with whole	Illuminations is a	value below each
numbers as they applied	project designed by	other.
multiple strategies to	NCTM. The site includes	
compute and solve	lessons, activities, and	
problems. Students can	computer applets.	
continue to use different		
strategies and methods	Math Coach's Corner	
learned previously—as long	Donna Boucher	
as the methods are	<u>http://www.mathcoachs</u>	
<i>efficient</i> —but they must	<u>corner.com</u>	
also understand and be	This site is a blog by an	
able to use the standard	elementary	
algorithm.	mathematics coach.	
	Her blog includes	
	mathematical	
Teachers can begin with	background on	
simple examples to help	concepts as well as	
students understand the	mathematical tasks.	
use of place value when		
dividing with two-digit		
divisors. For example,		
having students divide 120		
by 30; clearly, the answer is		
4, since this is 12 tens		
divided by 3 tens. However,		
when dividing 1200 by 30,		
students need to think of		
this as 120 tens divided by 3		
tens, which is 40. This		
illustrates why the 4 would		
go in the tens place of the		
quotient.		
-		
Division strategies in grade		
five extend the methods		

learned in grade four to two-digit divisors. Students continue to break the dividend into base-ten units and find the quotient place by place, starting from the highest place. They illustrate and explain their calculations by using equations, rectangular arrays, and/or area models.		
--	--	--

Number and Operations Fractions

Standards	Teacher Understandings	Resources	Student Understandings
Use equivalent fractions as a strategy to add and subtract fractions. M.5.11 Add and subtract fractions with unlike denominators, including mixed numbers, by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators (e.g., 2/3 + 5/4 = 8/12 + 15/12 = 23/12). Instructional Note: In general, a/b + c/d = (ad + bc)/bd.	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the	The following is a list of resources for teachers and students: Math TREE Online Education Resources A curated set of aligned, internet resources for WV elementary math teachers Quantile Teacher	 Prior to adding and subtracting fractions with unlike denominators, students need to understand the fractional parts must be traded for equivalent units (common denominator).
M.5.12	grade level content standards. The teacher	Assistant This tool is aligned to	 Students need to understand how to
Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of	needs to craft instructional tasks that connect the Mathematical Habits of	WV standards and is designed to help educators locate	create equivalent fractions with the same

unlike denominators by using visual	Mind to the content	resources that can	denominators before
fraction models or equations to	standards.	support instruction	adding or subtracting, a
represent the problem. Use benchmark		and identify skills most	concept learned in
fractions and number sense of fractions	This is the first time	relevant to standards.	grade four. In general.
to estimate mentally and assess the	students have been		they understand that
reasonableness of answers (e.g.,	exposed to adding and	Illustrative	for any whole numbers
recognize an incorrect result 2/5 + 1/2 =	subtracting with unlike	Mathematics	
3/7, by observing that 3/7 < 1/2).	denominators. Students	<u>http://www.illustrative</u>	a, b, and n, $\frac{1}{b} = \frac{1}{n \times b}$
	need repeated experiences	<u>mathmatics.org</u>	(given that <i>n</i> and <i>b</i> are
Apply and extend previous	with fraction models to	This website provides	non-zero).
understandings of multiplication and	develop the concept you	teachers with learning	Students need to be
division to multiply and divide	can't add 1/4 and 2/3	tasks that develop the	able to visualize
fractions.	without an understanding	WV College- and	benchmark fractions.
	of equivalent fractions.	Career-Readiness	Multiplication does not
M.5.13	With exposure to fraction	Standards for	always result in a larger
Interpret a fraction as division of the	models, students know they	Mathematics,	always result in a larger
numerator by the denominator (a/b = a	must first find a common	supporting the	answer, unision in a
÷ b). Solve word problems involving	unit (denominator).	teacher's content	smaller.
division of whole numbers leading to	In grada faur atudanta	knowledge of	
answers in the form of fractions or	multiply a fraction by a	mathematics.	
mixed numbers by using visual fraction	multiply a fraction by a		
models or equations to represent the	five students build on this	Graham Fletcher Site G	
problem. (e.g., Interpret 3/4 as the	understanding	Fletchy	
result of dividing 3 by 4, noting that 3/4	understanding.	http://www.gfletchy.co	
multiplied by 4 equals 3 and that when	Students apply and extend	<u>m</u>	
3 wholes are shared equally among 4	provious understandings of	This website includes	
people each person has a share of size	multiplication to multiply a	learning progression	
3/4. If 9 people want to share a 50-	fraction or whole number	videos related to	
pound sack of rice equally by weight,	by a fraction. They multiply	counting, and 3-Act	
now many pounds of rice should each	fractions efficiently and	tasks that may be	
person get? Between what two Whole	accurately and solve	Connected to the WV	
numbers does your answer lie?)	problems in both contextual	College- and Career-	
M.S. 14 Apply and extend previous	and non-contextual	Reduiness Standards	
understandings of multiplication to	situations Students reason	ior mathematics.	
multiply a fraction or whole number by			

number by a fraction less than 1 results in a product smaller than the given	is limited to a whole number divided by a unit	
number; and relating the principle of fraction equivalence $a/b = (nxa)/(nxb)$	fraction and a unit fraction	
to the effect of multiplying a/b by 1.		
M.5.16 Solve real-world problems involving multiplication of fractions and mixed numbers by using visual fraction models or equations to represent the problem.		
M.5.17		
Apply and extend previous		
understandings of division to divide		
whole numbers by unit fractions		
Instructional Note: Students able to		
multiply fractions in general can		
develop strategies to divide fractions in		
general, by reasoning about the		
relationship between multiplication		
and division, but division of a fraction		
by a fraction is not a requirement at		
this grade.		
a. Interpret division of a unit		
fraction by a non-zero whole number		
and compute such quotients. (e.g.,		
Create a story context for $(1/3) \div 4$ and		
use a visual fraction model to show the		
quotient. Use the relationship between		
multiplication and division to explain		
$(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/12$		
1/3.)		

b. Interpret division of a whole		
number by a unit fraction and compute		
such quotients. (e.g., Create a story		
context for 4 ÷ (1/5) and use a visual		
fraction model to show the quotient.		
Use the relationship between		
multiplication and division to explain		
that 4 ÷ (1/5) = 20 because 20 × (1/5) =		
4.)		
c. Solve real-world problems		
involving division of unit fractions by		
non-zero whole numbers and division		
of whole numbers by unit fractions by		
using visual fraction models and		
equations to represent the problem.		
(e.g., How much chocolate will each		
person get if 3 people share 1/2 lb. of		
chocolate equally? How many1/3-cup		
servings are in 2 cups of raisins?)		

Measurement and Data

Standards	Teacher Understandings	Resources	Student Understandings
Convert like measurement units within a given measurement system.	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in	The following is a list of resources for teachers and students: Math TREE Online Education Resources	 Students need to know the difference between square and cubic units.
M.5.18 Convert among different-sized standard measurement units within a given measurement system	students' skills and understandings. This will leave students unprepared for the challenges they face in later grades.	A curated set of aligned, internet resources for WV elementary math teachers <u>Quantile Teacher Assistant</u> This tool is aligned to WV standards and is designed to help educators locate	• Square units have an exponent of 2; this relates to the object being two-dimensional.

(e.g., convert 5 cm to	Students use the	resources that can support instruction	•	Cubic units have an
0.05 m) and use these	Mathematical Habits of	and identify skills most relevant to		exponent of 3; this
conversions in solving	Mind to interact with the	standards.		relates to the object
multi-step, real-world	grade level content			being three-
problems.	standards. The teacher	Illustrative Mathematics		dimensional
	needs to craft instructional	http://www.illustrativemathmatics.org	•	It is assign for
Represent and interpret	tasks that connect the	This website provides teachers with	•	students to
data.	Mathematical Habits of	learning tasks that develop the WV		
	Mind to the content	College- and Career-Readiness Standards		understand volume
M.5.19	standards.	for Mathematics, supporting the teacher's		when given
Make a line plot to		content knowledge of mathematics.		experiences to build
display a data set of	Volume introduces a third			rectangular prisms
measurements in	dimension, a significant	Graham Fletcher Site G Fletchy		from cubes and see
fractions of a unit (1/2,	challenge to some	http://www.gfletchy.com		the layers as they
1/4, 1/8). Use	students' spatial	This website includes learning		construct the
operations on fractions	structuring and also a	progression videos related to counting,		volume.
for this grade to solve	complexity in the nature of	and 3-Act tasks that may be connected to	•	It is helpful for
problems involving	the materials measured.	the WV College- and Career- Readiness		students to use
information presented	Dy relating values to	Standards for Mathematics.		concrete
in line plots. (e.g., Given	By relating volume to			manipulatives before
different measurements	students develop an	Inside Mathematics		moving to nictorial
of liquid in identical	students develop an	http://insidemathematics.org		roprocontations
beakers, find the	understanding of volume.	Inside Mathematics is a nationally		representations.
amount of liquid each	It is helpful for students to	recognized multimedia website for		
beaker would contain if	use concrete manipulatives	educators around the world. This site		
the total amount in all	before moving to nictorial	Includes videos, learning tasks, and		
the beakers were	representations	performance assessment tasks.		
redistributed equally).	Students can explore the	NCTM Illuminations		
Coomotric	concept of volume by	https://illuminations		
Geoinetric	packing containers with	Illuminations is a project designed by		
understand concerts of	cubic units (cubes) to find	NCTM The site includes lessons		
volume and relate	the volume or by building	activities and computer applets		
volume to	up stacks of cubes without	activities, and computer applets.		
multiplication and to	the containers. Students	Math Coach's Cornor		
multiplication and to		ויומנוו כטמנוו ז כטו ווכו		

addition.	may also use drawings or	Donna Boucher	
	interactive computer	http://www.mathcoachscorner.com	
M.5.20	software to simulate this	This site is a blog by an elementary	
Recognize volume as an	packing process.	mathematics coach. Her blog includes	
attribute of solid figures		mathematical background on concepts as	
and understand	Students use the	well as mathematical tasks.	
concepts of volume	associative property of		
measurement.	multiplication and		
a. A cube with side	decomposition of numbers		
length 1 unit, called a	using factors to investigate		
"unit cube," is said to	rectangular prisms with a		
have "one cubic unit" of	given number of cubic		
volume and can be used	units.		
to measure volume.			
b. A solid figure			
which can be packed			
without gaps or			
overlaps using b unit			
cubes is said to have a			
volume of b cubic units.			
M.5.21			
Measure volumes by			
counting unit cubes,			
using cubic cm, cubic in,			
cubic ft, and improvised			
units.			
M 5 22			
Relate volume to the			
operations of			
multiplication and			
addition and solve real-			
world and mathematical			
		1	

volume.		
a. Find the volume		
of a right rectangular		
prism with whole-		
number side lengths by		
packing it with unit		
cubes and show that		
the volume is the same		
as would be found by		
multiplying the edge		
lengths, equivalently by		
multiplying the height		
by the area of the base.		
Represent threefold		
whole-number products		
as volumes (e.g., to		
represent the		
associative property of		
multiplication).		
b. Apply the		
formulas V = l × w × h		
and V = b × h for		
rectangular prisms to		
find volumes of right		
rectangular prisms with		
whole number edge		
lengths in the context of		
solving real-world and		
mathematical problems.		
c. Recognize		
volume as additive and		
find volumes of solid		
figures composed of		
two non-overlapping		
right rectangular prisms		

by adding the volumes		
of the non-overlapping		
parts, applying this		
technique to solve real-		
world problems.		

Geometry

Standards	Teacher Understandings	Resources	Student Understandings
Graph points on the coordinate plane to solve real-world and mathematical problems. M.5.23 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines, the origin,	It is important for teachers to understand that neglecting any grade-level standards will leave gaps in students' skills and understandings. This will leave students unprepared for the challenges they face in later grades. Students use the Mathematical Habits of Mind to interact with the grade level content	The following is a list of resources for teachers and students: Math TREE Online Education Resources A curated set of aligned, internet resources for WV elementary math teachers <u>Quantile Teacher Assistant</u> This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards.	 Previous work with number lines will help students build on their understanding to graph in two dimensions. Students need to understand Ordered Pairs have an "order". To graph the coordinate pair (x, y) students move
arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the	standards. The teacher needs to craft instructional tasks that connect the Mathematical Habits of Mind to the content standards. Students build on their previous work with number lines to use two perpendicular number lines	Illustrative Mathematics <u>http://www.illustrativemathmatics.org</u> This website provides teachers with learning tasks that develop the WV College- and Career-Readiness Standards for Mathematics, supporting the teacher's content knowledge of mathematics. Graham Fletcher Site G Fletchy <u>http://www.gfletchy.com</u>	 to the right first to graph the x value, then up to graph the y. Students need to be reminded when plotting coordinates (x, y) the first term "x" of the ordered pair is plotted to the

direction of one axis	to define a coordinate	This website includes learning progression		right and the second
and the second number	system.	videos related to counting, and 3-Act tasks		term "y" coordinate
indicates how far to		that may be connected to the WV College-		is plotted by moving
travel in the direction	Students need to	and Career- Readiness Standards for		upward.
of the second axis, with	understand the two axes	Mathematics.	•	Students need to
the convention that the	have names: the horizontal		•	understand the
names of the two axes	number line is the x-axis;	Inside Mathematics		
and the coordinates	the vertical number line is	http://insidemathematics.org		properties of
correspond (e.g., x-axis	the y-axis.	Inside Mathematics is a nationally		polygons.
and x-coordinate, y-		recognized multimedia website for	•	An understanding of
axis and y-coordinate).	Students will graph and	educators around the world. This site		parallel lines leads
	interpret points in the first	includes videos, learning tasks, and		to an understanding
M.5.24	quadrant only. Students	performance assessment tasks.		of parallelograms.
Represent real-world	will extend graphing to all		•	Rectangles are by
mathematical problems	four quadrants in later	NCTM Illuminations		definition also
by graphing points in	grades.	https://illuminations.nctm.org/		parallelograms
the first quadrant of	-	Illuminations is a project designed by		Squares are by
the coordinate plane		NCTM. The site includes lessons,	•	definition also
and interpret	A common misconception is	activities, and computer applets.		
coordinate values of	the order in plotting a			rectangles (opposite
points in the context of	coordinate point is	Math Coach's Corner		sides parallel and
the situation.	unimportant. To address	Donna Boucher		congruent; 4 right
	this misconception,	http://www.mathcoachscorner.com		angles).
Classify two-	teachers can ask students	This site is a blog by an elementary	٠	Perpendicular lines
dimensional figures	to plot points with the	mathematics coach. Her blog includes		form right angles
into categories based	coordinates switched. For	mathematical background on concepts as		and many polygons
on their properties.	example, referring to a	well as mathematical tasks.		are classified as a
	graph about number of			result of their
M.5.25	tickets sold and amount			angles. Squares and
Understand that	earned, If 4 tickets each			rectangles have 4
attributes belonging to	cost \$5 the coordinate (4,			right angles
a category of two	\$20) would not be the same			Squarec are by
dimensional figures	as (20, 4). Students might		•	Squares are by
also belong to all	locate points on a			definition also
subcategories of that				rhombuses (4

category (e.g., all rectangles have four right angles and squares are rectangles, so all squares have four right angles).	coordinate plane to visually see the difference. Opportunities should be provided for students to realize the importance of direction and distance—for	congruent sides and opposite sides parallel).
Classify two-	student create directions	
dimensional figures in a	for other students to follow	
hierarchy based on	as they plot points.	
properties.	Students should discuss	
	characteristics of polygons	
	and arrive at	
	understandings such as:	
	 A square is a rectangle, but a rectangle is not necessarily a square. Rectangles are parallelograms; 	
	parallelograms are not necessarily	
	rectangles.	
	 Squares are 	
	rhombuses, but	
	rhombuses are not	
	necessarily squares.	

Trapezoids have one pair of parallel sides.

Steven L. Paine, Ed.D. West Virginia Superintendent of Schools