

Frameworks for Mathematics Mathematics I

West Virginia Board of Education 2018-2019

David G. Perry, President Miller L. Hall, Vice President Thomas W. Campbell, CPA, Financial Officer

> F. Scott Rotruck, Member Debra K. Sullivan, Member Frank S. Vitale, Member Joseph A. Wallace, J.D., Member Nancy J. White, Member James S. Wilson, D.D.S., Member

Carolyn Long, Ex Officio Interim Chancellor West Virginia Higher Education Policy Commission

Sarah Armstrong Tucker, Ed.D., Ex Officio Chancellor West Virginia Council for Community and Technical College Education

> **Steven L. Paine, Ed.D.,** Ex Officio State Superintendent of Schools West Virginia Department of Education

High School Mathematics I

Students in Mathematics I continue their work with expressions and modeling and analysis of situations. In previous grade levels, students informally defined, evaluated, and compared functions, using them to model relationships between quantities. In Mathematics I, students learn function notation and develop the concepts of *domain* and *range*. Students move beyond viewing functions as processes that take inputs and yield outputs and begin to view functions as objects that can be combined with operations (e.g., finding (f + g)(x) = f(x) + g(x)). They explore many examples of functions, including sequences. They interpret functions that are represented graphically, numerically, symbolically, and verbally, translating between representations and understanding the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that these representations are likely to be approximate and incomplete, depending upon the context. Students' work includes functions that can be described or approximated by formulas, as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They also interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.

Students who are prepared for Mathematics I have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. Mathematics I builds on these earlier experiences by asking students to analyze and explain the process of solving an equation and to justify the process used in solving a system of equations. Students develop fluency in writing, interpreting, and translating between various forms of linear equations and inequalities and using them to solve problems. They master solving linear equations and apply related solution techniques and the laws of exponents to the creation and solving of simple exponential equations. Students explore systems of equations and inequalities, finding and interpreting solutions. All of this work is based on understanding quantities and the relationships between them.

In Mathematics I, students build on their prior experiences with data, developing more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.

In previous grade levels, students were asked to draw triangles based on given measurements. They also gained experience with rigid motions (translations, reflections, and rotations) and developed notions about what it means for two objects to be congruent. In Mathematics I, students establish triangle congruence criteria based on analyses of rigid motions and formal constructions. They solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete

geometric constructions and explain why the constructions work. Finally, building on their work with the Pythagorean Theorem in the grade-eight standards to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines.

Modeling

Standards	Teacher Understandings	Resources	Student Understandings
Although the Modeling category does not include specific standards, the idea of using mathematics to model the world pervades all higher mathematics courses and should hold a significant place in instruction. Modeling is addressed first here to emphasize its importance in the higher mathematics curriculum.	Modeling at the higher mathematics level goes beyond the simple application of previously constructed mathematics and includes real-world problems. True modeling begins with students asking a question about the world around them and then constructing the mathematics in the process of attempting to answer the question. Modeling problems have an element of being genuine problems, in the sense that students care about answering the question under consideration. In modeling, mathematics is used as a tool to answer questions that students really want answered.	Educators' Guide for Mathematics Organized by conceptual categories, this document provides exemplars to explain the content standards, highlight connections to the Mathematical Habits of Mind, and demonstrate the importance of developing conceptual understanding, procedural skill and fluency, and application. It highlights some necessary foundational skills	 When presented with a real-world situation and challenged to ask a question, students encounter all sorts of new issues: Which of the quantities present in this situation are known and unknown? Can a table of data be made? Is there a functional relationship in this situation? Students decide on a solution path that may need to be revised. They make use of tools such as calculators, dynamic geometry software, or spreadsheets. They use previously derived models (e.g., linear functions) as well as new formulas or functions that apply.

a m e t c r ii r ii t c b s r f m b t t s t t	and formulate a mathematical model (an equation, table, graph, and the like), compute an answer or rewrite their expression to reveal new information, interpret and validate the results, and report out. This is a new approach for many teachers and may be challenging to implement, but the effort should show students that mathematics is relevant to their lives. From a pedagogical perspective, modeling gives a concrete basis from which to abstract the mathematics and often serves to motivate students to become independent learners.	A curated set of aligned internet resources for WV middle and high school math teachers.	•	Students may discover that answering their question requires solving an equation and knowing the output value of a function at an unknown input value.
C T S n S U g S S S S	Content by Cluster Teachers must provide students opportunity to master each content standard. It is important to understand that neglecting grade-level content standards will leave gaps in students' skills and			

Functions

Standards	Teacher Understandings	Resources	Student Understandings
LINEAR AND EXPONENTIAL RELATIONSHIPS Understand the concept of a function and use function notation. M.1HS.12 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation	The standards in the Functions conceptual category can serve as motivation for the study of standards in the other Mathematics I conceptual categories. For instance, an equation wherein one is asked to "solve for <i>x</i> " can be seen as a search for the input of a function <i>f</i> that gives a specified output, and solving the equation amounts to undoing the work	Educators' Guide Organized by conceptual categories, this document provides exemplars to explain the content standards, highlight connections to the Mathematical Habits of Mind, and demonstrate the importance of developing	 While the grade-eight standards called for students to work informally with functions, students in Mathematics I refine their understanding and use the formal mathematical language of functions. Students learn the language of functions and that a function has a domain that must be

y = f(x). Instructional Note: Students	of the function. Or, the graph	conceptual		specified as well as a
should experience a variety of types of	of an equation such as $y =$	understanding,		corresponding range.
situations modeled by functions.	$\frac{1}{x}$ + 5 can be seen as a	procedural skill and	•	Students develop the
Detailed analysis of any particular	³ representation of a function	fluency, and		connection between the
class of function at this stage is not	$\int \frac{1}{2} dx = \frac{1}{2} \int \frac{1}{2} dx = \frac{1}{2}$	application.		graph of an equation and
advised. Students should apply these	f where $f(x) = \frac{1}{3}x + 5$.	Math TDEE Online		the function itself,
concepts throughout their future	Solving a more complicated	Math TREE Unline		understanding that the
mathematics courses. Draw examples	equation can be seen as	Education Resources		graph is a representation
from linear and exponential functions.	asking, "For which values of	A curated set of		of a function.
	do two functions and agree?	aligned internet	•	Students recognize
M.1H5.13	(i.e., when does $f(s) =$	resources for WV		sequences as functions.
Use function notation, evaluate	g(x)?)," and the intersection	middle and nigh		They are introduced to
functions for inputs in their domains	of the two graphs $y = f(x)$	school math teachers.		arithmetic and geometric
and interpret statements that use	and $y = g(x)$ is then	Quantile Teacher		sequences, written both
function notation in terms of a context.	connected to the solution of	Assistant		explicitly and recursively.
Instructional Note: Students should	this equation. In general,	This tool is aligned to	•	Students represent
experience a variety of types of	functions describe in a	WV standards and is		linear, exponential, and
situations modeled by functions.	precise way how two	designed to help		absolute value functions
Detailed analysis of any particular	quantities are related and	educators locate		with graphs and identify
class of function at this stage is not	can be used to make	resources that can		key features in the graph.
advised. Students should apply these	predictions and	support instruction		They represent the same
concepts throughout their future	generalizations, keeping true	and identify skills		function algebraically in
mathematics courses. Draw examples	to the emphasis on modeling	most relevant to		different forms and
from linear and exponential functions.	in higher mathematics.	standards		interpret these
M.1HS.14	Contont by Cluster			differences in terms of
Recognize that sequences are	Content by Cluster			the granh or context
functions sometimes defined	Teachers must provide			Students recognize and
recursively, whose domain is a subset	students opportunity to		•	understand the defining
of the integers. For example, the	master each content			characteristics of linear
Fibonacci sequence is defined	standard. It is important to			and experiential
requires value by $f(0) = f(1) = 1$ $f(n+1) = 1$	understand that neglecting			anu exponential
f(n) + f(n-1) for n > 1 Instructional Nota:	grade-level content			iuncuons.
$ (1)^+ (1)^- $	standards will leave gaps in			

Students should experience a variety	students' skills and	
of types of situations modeled by	understandings and will	
functions. Detailed analysis of any	leave students unprepared	
particular class of function at this	for the challenges they face	
stage is not advised. Students should	in later grades. A content	
apply these concepts throughout their	plan must demonstrate a	
future mathematics courses. Draw	means by which students can	
examples from linear and exponential	be provided opportunity to	
functions. Draw connection to	address all grade-level	
M.1HS.21, which requires students to	content standards and to	
write arithmetic and geometric	revisit and practice skills and	
sequences. Emphasize arithmetic and	strengthen understandings	
geometric sequences as examples of	throughout the school year.	
linear and exponential functions.		
Interpret functions that arise in		
applications in terms of a context.		
M.1HS.15		
For a function that models a		
relationship between two quantities.		
interpret key features of graphs and		
tables in terms of the quantities and		
sketch graphs showing key features		
given a verbal description of the		
relationship. Key features include:		
intercepts; intervals where the function		
is increasing, decreasing, positive or		
negative; relative maximums and		
minimums; symmetries; end behavior;		
and periodicity. Instructional Note:		
Focus on linear and exponential		
functions.		

M.1HS.16		
Relate the domain of a function to its		
graph and, where applicable, to the		
quantitative relationship it describes.		
(e.g., If the function h(n) gives the		
number of person-hours it takes to		
assemble n engines in a factory, then		
the positive integers would be an		
appropriate domain for the function.)		
Instructional Note: Focus on linear and		
exponential functions.		
M 1HS 17		
Calculate and interpret the average		
rate of change of a function (presented		
symbolically or as a table) over a		
specified interval. Estimate the rate of		
change from a granh Instructional		
Note: Focus on linear functions and		
intervals for exponential functions		
whose domain is a subset of the		
integers Mathematics II and III will		
address other function types		
address other runction types.		
Analyze functions using different		
representations.		
M.1HS.18		
Graph functions expressed		
symbolically and show key features of		
the graph, by hand in simple cases and		
using technology for more complicated		
cases.		
a. Graph linear and quadratic		

functions and show intercepts,		
maxima, and minima.		
b. Graph exponential and logarithmic		
functions, showing intercepts and		
end behavior, and trigonometric		
functions, showing period, midline,		
and amplitude.		
M.1HS.19		
Compare properties of two functions		
each represented in a different way		
(algebraically, graphically, numerically		
in tables, or by verbal descriptions).		
(e.g., Given a graph of one quadratic		
function and an algebraic expression		
for another, say which has the larger		
maximum.) Instructional Note: Focus		
on linear and exponential functions.		
Include comparisons of two functions		
presented algebraically. For example,		
compare the growth of two linear		
functions, or two exponential functions		
such as $y = 3^{n}$ and $y = 100.2^{n}$.		
Build a function that models a		
relationship between two quantities.		
M.1HS.20		
Write a function that describes a		
relationship between two quantities.		
a. Determine an explicit expression, a		
recursive process or steps for		
calculation from a context.		
b. Combine standard function types		
using arithmetic operations. (e.g.,		

Build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.) Instructional Note: Limit to linear and exponential functions.

M.1HS.21

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Instructional Note: Limit to linear and exponential functions. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

Build new functions from existing functions.

M.1HS.22

Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Instructional Note: Focus on vertical translations of graphs of linear

and exponential functions. Relate the		
vertical translation of a linear function		
to its y-intercept. While applying other		
transformations to a linear graph is		
appropriate at this level, it may be		
difficult for students to identify or		
distinguish between the effects of the		
other transformations included in this		
standard.		
Construct and commons linear		
Construct and compare linear,		
quadratic, and exponential models and		
solve problems.		
M.THS.23		
Distinguish between situations that can		
be modeled with linear functions and		
with exponential functions.		
a. Prove that linear functions grow		
by equal differences over equal		
grow by equal factors over		
equal intervals		
h Recognize situations in which		
one quantity changes at a		
constant rate per unit interval		
relative to another.		
c. Recognize situations in which a		
quantity grows or decays by a		
constant percent rate per unit		
interval relative to another.		
M.1HS.24		
Construct linear and exponential		
functions, including arithmetic and		

geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).		
M.1HS.25 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. Instructional Note: Limit to comparisons between exponential and linear models.		
Interpret expressions for functions in terms of the situation they model. M.1HS.26 Interpret the parameters in a linear or exponential function in terms of a context. Instructional Note: Limit exponential functions to those of the form f(x) = b ^x + k.		

Number and Quantity

Standards	Teacher Understandings	Resources	Student Understandings
RELATIONSHIPS BETWEEN QUANTITIES	In real-world problems, the	Educators' Guide	 Students create
Reason quantitatively and use units to	answers are usually not	Organized by	expressions that
solve problems.	numbers, but quantities:	conceptual	describes a computation
M.1HS.1	numbers with units, which	categories, this	involving a general

Use units as a way to understand document provides quantity. This skill involve measurement. In their work in measurement requires the ability to problems and to guide the solution of exemplars to explain multi-step problems; choose and up through grade eight, the content express computation in interpret units consistently in students primarily measure standards, highlight general terms, formulas: choose and interpret the commonly used attributes connections to the abstracting from specific scale and the origin in graphs and data such as length, area, and Mathematical Habits instances. of Mind, and displays. volume. In higher mathematics, students demonstrate the **M.1HS.2** encounter a wider variety of importance of Define appropriate quantities for the units in modeling-for developing purpose of descriptive modeling. example, when considering conceptual Instructional Note: Working with acceleration, currency understanding, quantities and the relationships conversions, derived procedural skill and between them provides grounding for quantities such as personfluency, and work with expressions, equations, and hours and heating degreeapplication. functions. days, social science rates Math TREE Online such as per-capita income, **M.1HS.3 Education Resources** and rates in everyday life Choose a level of accuracy appropriate A curated set of such as points scored per to limitations on measurement when aligned internet game or batting averages. reporting quantities. resources for WV middle and high **Content by Cluster** school math teachers. Teachers must provide students opportunity to master each content standard. It is important to understand that neglecting grade-level content standards will leave gaps in students' skills and understandings and will leave students unprepared

for the challenges they face	
in later grades. A content	
plan must demonstrate a	
means by which students can	
be provided opportunity to	
address all grade-level	
content standards and to	
revisit and practice skills and	
strengthen understandings	
throughout the school year.	
5	

Algebra

Standards .	Teacher Understandings	Resources	Student Understandings
 Interpret the structure of expressions. M.1HS.4 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)ⁿ as the product of P and a factor not depending on P. Instructional Note: Limit to linear expressions with integer exponents. Create equations that describe numbers or relationships 	In the Algebra conceptual category, students extend the work with expressions that they started in grades six through eight. They create and solve equations in context, utilizing the power of variable expressions to model real- world problems and solve them with attention to units and the meaning of the answers they obtain. They continue to graph equations, understanding the resulting picture as a representation of the points catisfying the	Educators' Guide Organized by conceptual categories, this document provides exemplars to explain the content standards, highlight connections to the Mathematical Habits of Mind, and demonstrate the importance of developing conceptual understanding, procedural skill and fluency, and application.	 Students read expressions with comprehension. This skill requires an analysis of the underlying structure of the expression. Students solve linear equations and inequalities in one variable, including equations and inequalities and equations with coefficients represented by letters. Students solve equations

M.1HS.5

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions. Instructional Note: Limit to linear and exponential equations and in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs.

M.1HS.6

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Instructional Note: Limit to linear and exponential equations and in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs.

M.1HS.7

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. (e.g., Represent inequalities describing nutritional and cost constraints on equation. This conceptual category accounts for a large portion of the Mathematics I course and, along with the Functions category, represents the main body of content.

The Algebra conceptual category in higher mathematics is very closely related to the Functions conceptual category:

 An expression in one variable can be viewed as defining a function: the act of evaluating the expression is an act of producing the function's output given the input.

An equation in two variables can sometimes be viewed as defining a function, if one of the variables is designated as the input variable and the other as the output variable, and if there is just one output for each input. This is the case if the expression is of the form y =(expression in x) or if it Math TREE Online Education Resources A curated set of aligned internet resources for WV middle and high school math teachers.

<u>Quantile Teacher</u> <u>Assistant</u>

This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards. *explain* the steps as resulting from previous true equations. In this way, the idea of *proof*, while not explicitly named, is given a prominent role in the solving of equations, and the reasoning and justification process is not simply relegated to a future mathematics course.

Students understand that if the two sides of one equation are equal, and the two sides of another equation are equal, then the sum (or difference) of the left sides of the two equations is equal to the sum (or difference) of the right sides. The reversibility of these steps justifies that an equivalent system of equations has been achieved. This is a crucial understanding as students' reason about solving systems of equations.

combinations of different foods.)	can be put into that	 Students recognize the
Instructional Note: Limit to linear	form by solving for y.	relationship between the
equations and inequalities.	 The notion of 	algebraic representation
	equivalent expressions	of an equation and its
M.1HS.8 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm's law V = IR to highlight resistance P. Instructional	 can be understood in terms of functions: if two expressions are equivalent, they define the same function. The solutions to an 	graph plotted in the coordinate plane and understand geometric interpretations of solutions to equations
Note: Limit to formulas with a linear focus.	equation in one variable can be understood as the input values that vield the	and mequatities.
Represent and solve equations and inequalities graphically. M.1HS.9 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	same output in the two functions defined by the expressions on each side of the equation. This insight allows for the method of finding approximate solutions by graphing functions defined by each side	
Instructional Note: Focus on linear and exponential equations and be able to adapt and apply that learning to other types of equations in future courses.	and finding the points where the graphs intersect.	
M.1HS.10 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, (e.g., using technology to graph the	Thus, in light of understanding functions, the main content of the Algebra category (solving equations, working with expressions, and so forth)	

functions, make tables of values, or	serves a very important	
find successive approximations).	purpose.	
Include cases where $f(x)$ and/or $g(x)$		
are linear, polynomial, rational,	When solving equations,	
absolute value exponential, and	students make use of the	
logarithmic functions. Instructional	symmetric and transitive	
Note: Focus on cases where f(x) and	properties and particular	
g(x) are linear or exponential.	properties of equality	
	regarding operations (e.g.,	
M.1HS.11	"Equals added to equals	
Graph the solutions to a linear	are equal"). Students solve	
inequality in two variables as a half-	an equation and explain	
plane (excluding the boundary in the	the steps as resulting from	
case of a strict inequality) and graph	previous true equations	
the solution set to a system of linear	and using the symmetric	
inequalities in two variables as the	and transitive properties	
intersection of the corresponding half-	and particular properties of	
planes.	equality regarding	
Understand solving equations as a	operations. In this way, the	
onuerstand solving equations as a	idea of <i>proof</i> , while not	
process of reasoning and explain the	explicitly named, is given a	
reasoning.	prominent role in the	
M. ITS.27	solving of equations, and	
Explain each step in solving a simple	the reasoning and	
equation as following from the equality	justification process is not	
of numbers asserted at the previous	simply relegated to a future	
the original equation has a solution	mathematics course. The	
Construct a viable argument to justify a	following example	
construct a viable argument to justify a	illustrates the justification	
Solution method. Instructional Note:	process that may be	
Sudents should locus on linear	expected in Mathematics I.	
equations and be able to extend and		
apply their reasoning to other types of		

equations in future courses. Students	Content by Cluster	
will solve exponential equations with	Teachers must provide	
logarithms in Mathematics III.	students opportunity to	
	master each content	
Solve equations and inequalities in	standard. It is important to	
one variable.	understand that neglecting	
M.1HS.28	grade-level content	
Solve linear equations and inequalities	standards will leave gaps in	
in one variable, including equations	students' skills and	
with coefficients represented by	understandings and will	
letters. Instructional Note: Extend	leave students unprepared	
earlier work with solving linear	for the challenges they face	
equations to solving linear inequalities	in later grades. A content	
in one variable and to solving literal	plan must demonstrate a	
equations that are linear in the	means by which students	
variable being solved for. Include	can be provided	
simple exponential equations that rely	opportunity to address all	
only on application of the laws of	grade-level content	
exponents, such as $5^x = 125$ or $2^x = 1/16$.	standards and to revisit	
Solve systems of equations	and practice skills and	
M.1HS.29	strengthen understandings	
Prove that, given a system of two	throughout the school year.	
equations in two variables, replacing		
one equation by the sum of that		
equation and a multiple of the other		
produces a system with the same		
solutions. Instructional Note: Build on		
student experiences graphing and		
solving systems of linear equations		
from middle school to focus on		
justification of the methods used.		
Include cases where the two equations		

describe the same line (yielding infinitely many solutions) and cases where two equations describe parallel lines (yielding no solution); connect to M.1HS.50, which requires students to prove the slope criteria for parallel lines.		
M.1HS.30		
Solve systems of linear equations		
exactly and approximately (e.g., with		
graphs), focusing on pairs of linear		
Instructional Note: Build on student		
experiences graphing and solving		
systems of linear equations from		
middle school to focus on justification		
of the methods used. Include cases		
where the two equations describe the		
solutions) and cases where two		
equations describe parallel lines		
(yielding no solution); connect to		
M.1HS.50, which requires students to		
prove the slope criteria for parallel		
lines.		

Geometry

specified center through a specified	grade-level content	<u>Quantile Teacher</u>		their experience with
angle).	standards will leave gaps in	<u>Assistant</u>		transforming figures
M 1UC /1	students' skills and	This tool is aligned to		using patty paper,
M. ID.41	understandings and will	WV standards and is		transparencies, or
transzoid or rogular polygon doscribo	leave students unprepared	designed to help		geometry software.
the rotations and reflections that carry	for the challenges they face	educators locate	•	As students refine their
it onto itself. Instructional Note: Build	in later grades. A content	resources that can		definition of congruence
on student experience with rigid	plan must demonstrate a	support instruction		in terms of rigid motions,
motions from earlier grades Point out	means by which students can	and identify skills		they are better able to
the basis of rigid motions in geometric	be provided opportunity to	most relevant to		apply this concept to any
concepts (e.g. translations move	address all grade-level	standards.		shape in the plane.
points a specified distance along a line	content standards and to			(Previously, congruence
parallel to a specified line: rotations	revisit and practice skills and			seemed to depend on
move objects along a circular arc with	strengtnen understandings			criteria that were specific
a specified center through a specified	throughout the school year.			only to particular
angle).				snapes.)
			•	Students use coordinates
M.1H5.42				to prove simple
Develop definitions of rotations,				geometric theorems.
angles sincles perpendicular lines			•	Students use
angles, circles, perpendicular lines,				relationships between
parallel lines and line segments.				slopes of parallel and
avaoriance with rigid motions from				perpendicular lines to
experience with right motions from				solve problems and to
rigid motions in geometric concents				Justify why these
$(a \sigma, translations move points a)$				Telationships are true.
specified distance along a line parallel				
to a specified line: rotations move				
objects along a circular arc with a				
specified center through a specified				
angle).				

M.1HS.43		
Given a geometric figure and a		
rotation, reflection or translation draw		
the transformed figure using, e.g.,		
graph paper, tracing paper or geometry		
software. Specify a sequence of		
transformations that will carry a given		
figure onto another. Instructional		
Note: Build on student experience with		
rigid motions from earlier grades. Point		
out the basis of rigid motions in		
geometric concepts, (e.g., translations		
move points a specified distance along		
a line parallel to a specified line;		
rotations move objects along a circular		
arc with a specified center through a		
specified angle).		
Understand congruence in terms of		
rigid motions.		
M.1HS.44		
Use geometric descriptions of rigid		
motions to transform figures and to		
predict the effect of a given rigid		
motion on a given figure; given two		
figures, use the definition of		
congruence in terms of rigid motions		
to decide if they are congruent.		
Instructional Note: Rigid motions are		
at the foundation of the definition of		
congruence. Students reason from the		
basic properties of rigid motions (that		
they preserve distance and angle),		

which are assumed without proof. Rigid		
motions and their assumed properties		
can be used to establish the usual		
triangle congruence criteria, which can		
then be used to prove other theorems.		
M.1H5.45		
Use the definition of congruence in		
terms of rigid motions to show that two		
triangles are congruent if and only if		
corresponding pairs of sides and		
corresponding pairs of angles are		
congruent. Instructional Note: Rigid		
motions are at the foundation of the		
definition of congruence. Students		
reason from the basic properties of		
rigid motions (that they preserve		
distance and angle), which are		
assumed without proof. Rigid motions		
and their assumed properties can be		
used to establish the usual triangle		
congruence criteria, which can then be		
used to prove other theorems.		
M.1HS.46		
Explain how the criteria for triangle		
congruence (ASA, SAS, and SSS) follow		
from the definition of congruence in		
terms of rigid motions. Instructional		
Note: Rigid motions are at the		
foundation of the definition of		
congruence. Students reason from the		
basic properties of rigid motions (that		

they preserve distance and angle),		
which are assumed without proof. Rigid		
motions and their assumed properties		
can be used to establish the usual		
triangle congruence criteria, which can		
then be used to prove other theorems.		
Make geometric constructions.		
M.1HS.47		
Make formal geometric constructions		
with a variety of tools and methods		
(compass and straightedge, string,		
reflective devices, paper folding,		
dynamic geometric software, etc.).		
Copying a segment; copying an angle;		
bisecting a segment; bisecting an		
angle; constructing perpendicular		
lines, including the perpendicular		
bisector of a line segment; and		
constructing a line parallel to a given		
line through a point not on the line.		
Instructional Note: Build on prior		
student experience with simple		
constructions. Emphasize the ability to		
formalize and defend how these		
constructions result in the desired		
objects. Some of these constructions		
are closely related to previous		
standards and can be introduced in		
conjunction with them.		
M 1HS 48		
Construct an equilateral triangle a		
construct an equilateral triangle, a		

square and a regular hexagon		
inscribed in a circle. Instructional		
Note: Build on prior student		
experience with simple constructions.		
Emphasize the ability to formalize and		
defend how these constructions result		
in the desired objects. Some of these		
constructions are closely related to		
previous standards and can be		
introduced in conjunction with them.		

Statistics and Probability

Standards	Teacher Understandings	Resources	Student Understandings
Summarize, represent, and interpret	Students in Mathematics I	Educators' Guide	• Students use the shape
data on a single count or measurement	build on their understanding	Organized by	of a distribution and
variable.	of key ideas for describing	conceptual	question(s) to be
M.1HS.31	distributions— shape, center,	categories, this	answered to decide on
Represent data with plots on the real	and spread—presented in	document provides	the median or mean as
number line (dot plots, histograms,	the standards for grades six	exemplars to explain	the more appropriate
and box plots).	through eight. This enhanced	the content	measure of center and to
M.1HS.32 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. Instructional Note: In grades 6 – 8, students describe center and spread in a data distribution. Here	understanding allows students to give more precise answers to deeper questions, often involving comparisons of data sets. Content by Cluster Teachers must provide	standards, highlight connections to the Mathematical Habits of Mind, and demonstrate the importance of developing conceptual understanding,	 justify their choice through statistical reasoning. Students use parallel box plots or histograms to compare differences in the shape, center, and spread of comparable data sets.

they choose a summary statistic	students opportunity to	procedural skill and	٠	Students take a deeper
appropriate to the characteristics of	master each content	fluency, and		look at bivariate data,
the data distribution, such as the	standard. It is important to	application.		using their knowledge of
shape of the distribution or the	understand that neglecting	Math TREE Online		proportions to describe
existence of extreme data points.	grade-level content	Education Posourcos		categorical associations
 M.1HS.33 Interpret differences in shape, center and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). Instructional Note: In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points. Summarize, represent, and interpret data on two categorical and quantitative variables. M.1HS.34 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, 	standards will leave gaps in students' skills and understandings and will leave students unprepared for the challenges they face in later grades. A content plan must demonstrate a means by which students can be provided opportunity to address all grade-level content standards and to revisit and practice skills and strengthen understandings throughout the school year.	Education Resources A curated set of aligned internet resources for WV middle and high school math teachers. Quantile Teacher Assistant This tool is aligned to WV standards and is designed to help educators locate resources that can support instruction and identify skills most relevant to standards.	•	and using their knowledge of functions to fit models to quantitative data. Students extend their knowledge of scatter plots to fit mathematical models that capture key elements of the relationship between two variables and to explain what the model indicates about the relationship. Students examine residuals to learn more about the behavior of data. Students compute correlation coefficients using technology and interpret the value of the
marginal and conditional relative				coefficient.
Trequencies). Recognize possible			•	Students explore
				situations where
M.1HS.35				are mistakenly
Represent data on two quantitative				interchanged; students

variables on a scatter plot, and describe how the variables are related.carefully examine the story that data and computed statistics try tell.a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.tell.	to
describe how the variables are related.story that data and computed statistics try tell.a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.tell.	to
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	to
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	
functions fitted to data to solve problems in the context of the data.	
problems in the context of the data.	
Use given functions or choose a	
function suggested by the context.	
Emphasize linear and exponential	
models.	
b. Informally assess the fit of a	
function by plotting and analyzing	
residuals. (Focus should be on	
situations for which linear models	
are appropriate.)	
c. Fit a linear function for scatter	
plots that suggest a linear	
association.	
Instructional Note: Students take a	
more sophisticated look at using a	
linear function to model the	
relationship between two numerical	
variables. In addition to fitting a line to	
data, students assess how well the	
model fits by analyzing residuals.	
Interpret linear models.	
M.1HS.36	
Interpret the slope (rate of change)	
and the intercept (constant term) of a	
linear model in the context of the data.	
Instructional Note: Build on students'	
work with linear relationships in eighth	
grade and introduce the correlation	

coefficient. The focus here is on the computation and interpretation of the correlation coefficient as a measure of how well the data fit the relationship.		
M.1HS.37 Compute (using technology) and interpret the correlation coefficient of a linear fit. Instructional Note: Build on students' work with linear relationships in eighth grade and introduce the correlation coefficient. The focus here is on the computation and interpretation of the correlation coefficient as a measure of how well the data fit the relationship.		
M.1HS.38 Distinguish between correlation and causation. Instructional Note: The important distinction between a statistical relationship and a cause- and-effect relationship arises here.		

Steven L. Paine, Ed.D. West Virginia Superintendent of Schools