Grade 3

Overview of the West Virginia College- and Career-Readiness Standards for Mathematics

Included in Policy 2520.2B, the West Virginia College- and Career-Readiness Standards for Mathematics are two types of standards: the Mathematical Habits of Mind and the gradelevel Mathematics Content Standards. These standards address the skills, knowledge, and dispositions that students should develop to foster mathematical understanding and expertise, as well as concepts, skills, and knowledge - what students need to understand, know, and be able to do. The standards also require that the Mathematical Habits of Mind and the grade-level Mathematics Content Standards be connected. These connections are essential to support the development of students' broader mathematical understanding, as students who lack understanding of a topic may rely too heavily on procedures. The Mathematical Habits of Mind must be taught as carefully and practiced as intentionally as the grade-level Mathematics Content Standards are. Neither type should be isolated from the other; mathematics instruction is most effective when these two aspects of the West Virginia College- and Career-Readiness Standards for Mathematics come together as a powerful whole.

Mathematical Habits of Mind

Reasoning and Explaining
MHM2
Reason abstracting and
quantitatively
MHM3
Construct viable arguments
and critique the reasoning
of others

The eight Mathematical Habits of Mind (MHM) describe the attributes of mathematically proficient students and the expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Habits of Mind provide a vehicle through which students engage with and learn mathematics. As students move from elementary school through high school, the Mathematical Habits of Mind are integrated in the tasks as students engage in doing mathematics and master new and more advanced mathematical ideas and understandings.

The Mathematical Habits of Mind rest on important "processes and proficiencies " with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics' process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding it Up: adaptive reasoning, strategic competence, conceptual understanding, procedural fluency, and productive disposition (NGA/CCSSO 2010).

Ideally, several Mathematical Habits of Mind will be evident in each lesson as they interact and overlap with each other. The Mathematical Habits of Mind are not a checklist; they are the basis for mathematics instruction and learning. To help students persevere in solving problems (MHM1), teachers need to allow their students to struggle productively, and they must be attentive to the type of feedback they provide to students. Dr. Carol Dweck's research (Dweck 2006) revealed that feedback offering praise of effort and perseverance seems to engender a "growth mindset." In Dweck's estimation, growth-minded teachers tell students the truth about being able to close the learning gap between them and their peers and then give them the tools to close the gap (Dweck 2006).

Students who are proficient in the eight Mathematical Habits of Mind are able to use these skills not only in mathematics, but across disciplines and into their lives beyond school, college, and career.

Policy 2520.2B

West Virginia College- and Career-Readiness Standards for Mathematics

Mathematical Habits of Mind

The Mathematical Habits of Mind (hereinafter MHM) describe varieties of expertise that mathematics educators at all levels should develop in their students.

MHM1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables and graphs or draw diagrams of important features and relationships, graph data and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MHM2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand, considering the units involved, attending to the meaning of quantities, not just how to compute them, and knowing and flexibly using different properties of operations and objects.

MHM3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases and can recognize and use counterexamples.

They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense and ask useful questions to clarify or improve the arguments.

MHM4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

MHM5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

MHM6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

MHM7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MHM8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$ and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Policy 2520.2B

West Virginia College- and Career-Readiness Standards for Mathematics

Grade 3

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in the third grade will focus on four critical areas: (1) developing understanding of multiplication and division and strategies for multiplication and division within 100; (2) developing understanding of fractions, especially unit fractions (fractions with numerator 1); (3) developing understanding of the structure of rectangular arrays and of area; and (4) describing and analyzing two-dimensional shapes. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Continuing the skill progressions from second grade, the following chart represents the mathematical understandings that will be developed in third grade:

Operations and Algebraic Thinking

- Understand and know from memory how to multiply and divide numbers up to 10×10 fluently.
- Solve word problems using addition, subtraction, multiplication, and division.
- Begin to multiply numbers with more than one digit (e.g., multiplying 9×80).

Number and Operations- Fractions

- Understand fractions and relate them to the familiar system of whole numbers (e.g., recognizing that $3 / 1$ and 3 are the same number).

Geometry

- Reason about shapes (e.g., all squares are rectangles but not all rectangles are squares).
- Find areas of shapes, and relate area to multiplication (e.g., why is the number of square feet for a 9 -foot by 7 -foot room given by the product 9×7 ?).
- Understand the connection between equal parts of a shape being a unit of the whole.

Number and Operations in Base Ten

- Understand place value and properties of operations to perform multi-digit arithmetic, such as $10 \times 2,50 \times 3$, and 40×7.

Measurement and Data

- Measure and estimate weights and liquid volumes, and solve word problems involving these quantities.
- Tell time and write time to the nearest minute.
- Recognize area as a quality of twodimensional regions.
- Understand that rectangular arrays can be broken into identical rows or into identical columns. By breaking rectangles into rectangular arrays of squares, students connect area to multiplication, and explain how multiplication is used to determine the area of a rectangle.

Numbering of Standards

The following Mathematics Standards will be numbered continuously. The following ranges relate to the clusters found within Mathematics:

Operations and Algebraic Thinking	
Represent and solve problems involving multiplication and division.	Standards 1-4
Understand properties of multiplication and the relationship between multiplication and division.	Standards 5-6
Multiply and divide within 100.	Standard 7
Solve problems involving the four operations, and identify and explain patterns in arithmetic.	Standards 8-9
Number and Operations in Base Ten	Standards 10-12
Use place value and properties of operations to perform multi-digit arithmetic.	Standards 13-15
Number and Operations- Fractions	Develop an understanding as fractions as numbers.
Measurement and Data	Standards 18-19
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.	Standards 16-17
Represent and interpret data.	Standards 20-22
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.	Standard 23
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.	
Geometry	Standards 24-25
Reason with shapes and their attributes.	

Operations and Algebraic Thinking

Cluster	Represent and solve problems involving multiplication and division.
M.3.1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each (e.g., describe context in which a total number of objects can be expressed as 5×7).
M.3.2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each (e.g., describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$).
M.3.3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).
M.3.4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers (e.g., determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=? \div 3,6 \times 6=$?).

Cluster	Understand properties of multiplication and the relationship between multiplication and division.
M.3.5	Apply properties of operations as strategies to multiply and divide (e.g., If 6×4 $=24$ is known, then $4 \times 6=24$ is also known: Commutative Property of Multiplication. $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=$ 10, then $3 \times 10=30$: Associative Property of Multiplication. Knowing that $8 \times 5=$ 40 and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16=56$: Distributive Property. Instructional Note: Students need not use formal terms for these properties.
M.3.6	Understand division as an unknown-factor problem (e.g., find $32 \div 8$ by finding the number that makes 32 when multiplied by 8).

Cluster	Multiply and divide within 100.
M.3.7	Learn multiplication tables (facts) with speed and memory in order to fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows that $40 \div 5=8$) or properties of operations by the end of Grade 3.

Cluster	Solve problems involving the four operations, and identify and explain patterns in arithmetic.
M.3.8	Solve two-step word problems using the four operations, represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Instructional Note: This standard is limited to problems posed with whole numbers and having whole number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
M.3.9	Identify arithmetic patterns (including patterns in the addition table or multiplication table) and explain those using properties of operations (e.g., observe that 4 times a number is always even and explain why 4 times a number can be decomposed into two equal addends).

Number and Operations in Base Ten

Cluster	Use place value understanding and properties of operations to perform multi- digit arithmetic.
M.3.10	Use place value understanding to round whole numbers to the nearest 10 or 100.
M.3.11	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
M.3.12	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 $\times 80,5 \times 60)$ using strategies based on place value and properties of operations.

Number and Operations- Fractions

Cluster	Develop understanding of fractions as numbers.
M.3.13	Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. Instructional Note: Fractions in this standard are limited to denominators of $2,3,4,6$, and 8.
M.3.14	Understand a fraction as a number on the number line and represent fractions on a number line diagram. a. Represent a fraction $1 / \mathrm{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. (e.g., Given that b parts is 4 parts, then $1 / b$ represents $1 / 4$. Students partition the number line into fourths and locate $1 / 4$ on the number line.) b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. (e.g., Given that a/b represents $3 / 4$ or $6 / 4$, students partition the number line into fourths and represent these fractions accurately on the same number line; students extend the number line to include the number of wholes required for the given fractions.) Instructional Note: Fractions in this standard are limited to denominators of 2, $3,4,6$, and 8.
M.3.15	Explain equivalence of fractions in special cases and compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size or the same point on a number line. b. Recognize and generate simple equivalent fractions (e.g., 1/2 $=2 / 4,4 / 6$ $=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model). c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. (e.g., Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram.) d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, = or < and justify the conclusions (e.g., by using a visual fraction model). Instructional Note: Fractions in this standard are limited to denominators of 2, $3,4,6$, and 8.

Measurement and Data

Cluster	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.
M.3.16	Tell and write time to the nearest minute, measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes (e.g., by representing the problem on a number line diagram).
M.3.17	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg) and liters (l). Add, subtract, multiply or divide to solve one-step word problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale) to represent the problem. Instructional Note: Exclude compound units such as cm^{3} and finding the geometric volume of a container.

Cluster	Represent and interpret data.
M.3.18	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs (e.g., draw a bar graph in which each square in the bar graph might represent 5 pets).
M.3.19	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves or quarters.

Cluster	Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
M.3.20	Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by b unit squares is said to have an area of b square units.
M.3.21	Measure areas by counting unit squares (square cm, square m, square in, square ft. and improvised units).
M.3.22	Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
b. Multiply side lengths to find areas of rectangles with whole number side	
lengths in the context of solving real world and mathematical problems,	
and represent whole-number products as rectangular areas in	
mathematical reasoning.	

	decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Cluster	Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.
M.3.23	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Geometry

Cluster	Reason with shapes and their attributes.
M.3.24	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), that the shared attributes can define a larger category (e.g. quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
M.3.25	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ or the area of the shape.

