High School Mathematics II

Overview of the West Virginia College- and Career-Readiness Standards for Mathematics

Included in Policy 2520.2B, the West Virginia College- and Career-Readiness Standards for Mathematics are two types of standards: the Mathematical Habits of Mind and the gradelevel Mathematics Content Standards. These standards address the skills, knowledge, and dispositions that students should develop to foster mathematical understanding and expertise, as well as concepts, skills, and knowledge - what students need to understand, know, and be able to do. The standards also require that the Mathematical Habits of Mind and the grade-level Mathematics Content Standards be connected. These connections are essential to support the development of students' broader mathematical understanding, as students who lack understanding of a topic may rely too heavily on procedures. The Mathematical Habits of Mind must be taught as carefully and practiced as intentionally as the grade-level Mathematics Content Standards are. Neither type should be isolated from the other; mathematics instruction is most effective when these two aspects of the West Virginia College- and Career-Readiness Standards for Mathematics come together as a powerful whole.

Mathematical Habits of Mind

Reasoning and Explaining
MHM2
Reason abstracting and
quantitatively
MHM3
Construct viable arguments
and critique the reasoning
of others

The eight Mathematical Habits of Mind (MHM) describe the attributes of mathematically proficient students and the expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Habits of Mind provide a vehicle through which students engage with and learn mathematics. As students move from elementary school through high school, the Mathematical Habits of Mind are integrated in the tasks as students engage in doing mathematics and master new and more advanced mathematical ideas and understandings.

The Mathematical Habits of Mind rest on important "processes and proficiencies " with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics' process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding it Up: adaptive reasoning, strategic competence, conceptual understanding, procedural fluency, and productive disposition (NGA/CCSSO 2010).

Ideally, several Mathematical Habits of Mind will be evident in each lesson as they interact and overlap with each other. The Mathematical Habits of Mind are not a checklist; they are the basis for mathematics instruction and learning. To help students persevere in solving problems (MHM1), teachers need to allow their students to struggle productively, and they must be attentive to the type of feedback they provide to students. Dr. Carol Dweck's research (Dweck 2006) revealed that feedback offering praise of effort and perseverance seems to engender a "growth mindset." In Dweck's estimation, growth-minded teachers tell students the truth about being able to close the learning gap between them and their peers and then give them the tools to close the gap (Dweck 2006).

Students who are proficient in the eight Mathematical Habits of Mind are able to use these skills not only in mathematics, but across disciplines and into their lives beyond school, college, and career.

Policy 2520.2B

West Virginia College- and Career-Readiness Standards for Mathematics

Mathematical Habits of Mind

The Mathematical Habits of Mind (hereinafter MHM) describe varieties of expertise that mathematics educators at all levels should develop in their students.

MHM1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables and graphs or draw diagrams of important features and relationships, graph data and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MHM2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand, considering the units involved, attending to the meaning of quantities, not just how to compute them, and knowing and flexibly using different properties of operations and objects.

MHM3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases and can recognize and use counterexamples.

They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense and ask useful questions to clarify or improve the arguments.

MHM4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

MHM5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

MHM6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

MHM7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MHM8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$ and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Policy 2520.2B

West Virginia College- and Career-Readiness Standards for Mathematics

High School Mathematics II

All West Virginia teachers are responsible for classroom instruction that integrates content standards and objectives and mathematical habits of mind. Students in this course will focus on the need to extend the set of rational numbers, introducing real and complex numbers so that all quadratic equations can be solved. Students will explore the link between probability and data through conditional probability and counting methods, including their use in making and evaluating decisions. The study of similarity will lead students in Mathematics II to an understanding of right triangle trigonometry and connections to quadratics through Pythagorean relationships. Students will explore circles, with their quadratic algebraic representations. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from previous courses, the following chart represents the mathematical understandings that will be developed:

Extending the Number System	Quadratic Functions and Modeling
- Apply and reinforce laws of exponents to convert between radical notation and rational exponent notation; extend the properties of integer exponents to rational exponents and use them to simplify expressions. (e.g., $\sqrt[3]{16}=\sqrt[3]{2^{4}}=$ $2^{4 / 3} ;\left(\left(2^{-4}\right)\left(2^{-4}\right)^{\frac{1}{4}}=2^{-1}=\frac{1}{2}.\right)$	- Find an explicit algebraic expression or series of steps to model the context with mathematical representations. (e.g., The total revenue for a company is found by multiplying the price per unit by the number of units sold minus the production cost. The price per unit is modeled by $p(n)=-0.5 n^{2}+6$. The number of units sold is n. Production cost is modeled by $c(n)=3 n+7$. Write the revenue function.)
Expressions and Equations	Applications of Probability
- Solve a system consisting of a linear equation and a quadratic equation in two variables. (e.g., Find the intersection of the circle with a radius of 1 centered at the origin and the line $y=-3(x-2)$. Show your work both graphically and algebraically.)	- Work with probability and using ideas from probability in everyday situations. (e.g., Compare the chance that a person who smokes will develop lung cancer to the chance that a person who develops lung cancer smokes.)

Similarity, Right Triangle Trigonometry, and Circles With and Without Coordinates

Proof

- Apply knowledge of trigonometric ratios and the Pythagorean Theorem to determine distances in realistic situations. (e.g., Determine heights of inaccessible objects using various instruments, such as clinometers, hypsometers, transits, etc.)
- Use coordinates and equations to describe geometric properties algebraically. (e.g., Write the equation for a circle in the plane with specified center and radius.)

Numbering of Standards

The following Mathematics Standards will be numbered continuously. The following ranges relate to the clusters found within Mathematics:

Extending the Number System	Standards 1-2
Extend the properties of exponents to rational exponents.	Standard 3
Use properties of rational and irrational numbers.	Standards 4-5
Perform arithmetic operations with complex numbers.	Standard 6
Perform arithmetic operations on polynomials.	
Quadratic Functions and Modeling	Standards 7-9
Interpret functions that arise in applications in terms of a context.	Standards 10-12
Analyze functions using different representations.	Standard 13
Build a function that models a relationship between two quantities.	Standards 14-15
Build new functions from existing functions.	Standard 16
Construct and compare linear, quadratic, and exponential models and solve problems.	Standards 17-18
Expressions and Equations	Standard 19
Interpret the structure of expressions.	Standards 20-22
Write expressions in equivalent forms to solve problems.	Standard 23
Create equations that describe numbers or relationships.	Standards 24-26
Solve equations and inequalities in one variable.	Standard 27
Use complex numbers in polynomial identities and equations.	Standards 28-32
Solve systems of equations.	Standards 33-36
Applications of Probability	Standards 37-38
Understand independence and conditional probability and use them to interpret data.	Standards 39-41
Use the rules of probability to compute probabilities of compound events in a uniform probability model.	
Use probability to evaluate outcomes of decisions.	Similarity, Right Triangle Trigonometry, and Proof

Prove geometric theorems.	Standards 42-44
Prove theorems involving similarity.	Standards 45-46
Use coordinates to prove simple geometric theorems algebraically.	Standard 47
Define trigonometric ratios and solve problems involving right triangles.	Standards 48-50
Prove and apply trigonometric identities.	Standard 51
Circles With and Without Coordinates	Standards 52-55
Understand and apply theorems about circles.	Standard 56
Find arc lengths and areas of sectors of circles.	Standards 57-58
Translate between the geometric description and the equation for a conic section.	Use coordinates to prove simple geometric theorems algebraically. Standard 59 Explain volume formulas and use them to solve problems. Standards 60-61

Relationships between Quantities

Cluster	Extend the properties of exponents to rational exponents.
M.2HS.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. (e.g., We define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ 5.)
M.2HS. hold, so $\left(5^{1 / 3}\right)^{3}$ must equal	
	Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Cluster	Use properties of rational and irrational numbers.
M.2HS.3	Explain why sums and products of rational numbers are rational, that the sum of a rational number and an irrational number is irrational and that the product of a nonzero rational number and an irrational number is irrational. Instructional Note: Connect to physical situations, e.g., finding the perimeter of a square of area 2.

Cluster	Perform arithmetic operations with complex numbers.
M.2HS.4	Know there is a complex number i such that $\mathrm{i}^{2}=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.
M.2HS.5	Use the relation $\mathrm{i}^{2}=-1$ and the commutative, associative and distributive properties to add, subtract and multiply complex numbers. Instructional Note: Limit to multiplications that involve i^{2} as the highest power of i
Cluster	Perform arithmetic operations on polynomials.
M.2HS.6	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract and multiply polynomials. Instructional Note: Focus on polynomial expressions that simplify to forms that are linear or quadratic in a positive integer power of x.

Quadratic Functions and Modeling

Cluster	Interpret functions that arise in applications in terms of a context.
M.2HS.7	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in Mathematics I.
M.2HS.8	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. (e.g., If the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.) Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in Mathematics I.
M.2HS.9	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Instructional Note: Focus on quadratic functions; compare with linear and exponential functions studied in Mathematics I.

$\left.\begin{array}{|l|l|}\hline \text { Cluster } & \text { Analyze functions using different representations. } \\ \hline \text { M.2HS.10 } & \begin{array}{l}\text { Graph functions expressed symbolically and show key features of the graph, } \\ \text { by hand in simple cases and using technology for more complicated cases. } \\ \text { a. Graph linear and quadratic functions and show intercepts, maxima, } \\ \text { and minima. }\end{array} \\ \text { b. Graph square root, cube root and piecewise-defined functions, } \\ \text { including step functions and absolute value functions. Instructional } \\ \text { Note: Compare and contrast absolute value, step and piecewise } \\ \text { defined functions with linear, quadratic, and exponential functions. } \\ \text { Highlight issues of domain, range and usefulness when examining } \\ \text { piecewise-defined functions. }\end{array}\right\}$

classify them as representing exponential growth or decay.) Instructional Note: This unit and, in particular, this standard extends the work begun in Mathematics I on exponential functions with integer exponents.	
	Instructional Note: Extend work with quadratics to include the relationship between coefficients and roots and that once roots are known, a quadratic equation can be factored.

Cluster	Build a function that models a relationship between two quantities.
M.2HS.13	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. (e.g.,	
Build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. Instructional Note: Focus on situations that exhibit a quadratic or exponential relationship.	

Cluster	Build new functions from existing functions.
M.2HS.14	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Instructional Note: Focus on quadratic functions and consider including absolute value functions.
M.2HS.15	Find inverse functions. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$. Instructional Note: Focus on linear functions but consider simple situations where the domain of the function must be restricted in order for the inverse to exist, such as $f(x)=x^{2}$, $x>0$.

Cluster	Construct and compare linear, quadratic, and exponential models and solve problems.
M.2HS.16	Using graphs and tables, observe that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically; or (more generally) as a polynomial function. Instructional Note: Compare linear and exponential growth studied in Mathematics I to quadratic growth.

Expressions and Equations

Cluster	Interpret the structure of expressions.
M.2HS.17	Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their	
parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r})^{n}$ as the product	
of P and a factor not depending on P.	

Cluster	Write expressions in equivalent forms to solve problems.
M.2HS.19	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum	
or minimum value of the function it defines.	
c. Use the properties of exponents to transform expressions for	
exponential functions. For example the expression 1.15^{t} can be	
rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent	
monthly interest rate if the annual rate is 15%.	

Cluster	Create equations that describe numbers or relationships.
M.2HS.20	Create equations and inequalities in one variable and use them to solve problems. Instructional Note: Include equations arising from linear and

	quadratic functions, and simple rational and exponential functions. Extend work on linear and exponential equations in Mathematics I to quadratic equations.
M.2HS.21	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Instructional Note: Extend work on linear and exponential equations in Mathematics I to quadratic equations.
M.2HS.22	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm's law $V=I R$ to highlight resistance R.) Instructional Note: Extend to formulas involving squared variables. Extend work on linear and exponential equations in Mathematics I to quadratic equations.

Cluster	Solve equations and inequalities in one variable.
M.2HS.23	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b.Solve quadratic equations by inspection (e.g., for $\left.x^{2}=49\right)$, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b. Instructional Note: Extend to solving any quadratic equation with real coefficients, including those with complex solutions.

Cluster	Use complex numbers in polynomial identities and equations.
M.2HS.24	Solve quadratic equations with real coefficients that have complex solutions. Instructional Note: Limit to quadratics with real coefficients.
M.2HS.25(+)	Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$. Instructional Note: Limit to quadratics with real coefficients.
M.2HS.26(+)	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials. Instructional Note: Limit to quadratics with real coefficients.
Cluster	Solve systems of equations.
M.2HS.27	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. (e.g., Find the points of intersection between the line $y=-3 x$ and the circle $\left.x^{2}+y^{2}=3.\right)$ Instructional Note: Include systems that lead to work with fractions. (e.g., Finding the intersections between $x^{2}+y^{2}=1$ and $y=(x+1) / 2$ leads to the point $(3 / 5,4 / 5)$ on the unit circle, corresponding to the Pythagorean triple $\left.3^{2}+4^{2}=5^{2}.\right)$

Applications of Probability

Cluster	Understand independence and conditional probability and use them to interpret data.
M.2HS.28	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes or as unions, intersections or complements of other events ("or," "and," "not").
M.2HS.29	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities and use this characterization to determine if they are independent.
M.2HS.30	Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
M.2HS.31	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. (e.g., Collect data from a random sample of students in your school on their favorite subject among math, science and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.) Instructional Note: Build on work with two-way tables from Mathematics I to develop understanding of conditional probability and independence.
M.2HS.32	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. (e.g., Compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.)

Cluster	Use the rules of probability to compute probabilities of compound events in a uniform probability model.
M.2HS. 33	Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A and interpret the answer in terms of the model.
M.2HS. 34	Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.
M.	Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
M.2HS.36(+)	Use permutations and combinations to compute probabilities of compound events and solve problems.

Cluster	Use probability to evaluate outcomes of decisions.
M.2HS.37(+)	Use probabilities to make fair decisions (e.g., drawing by lots or using a random number generator).

M.2HS.38(+)	Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game). Instructional Note: This unit sets the stage for work in Mathematics III, where the ideas of statistical inference are introduced. Evaluating the risks associated with conclusions drawn from sample data (i.e., incomplete information) requires an understanding of probability concepts.

Similarity, Right Triangle Trigonometry, and Proof

Cluster	Understand similarity in terms of similarity transformations
M.2HS.39	Verify experimentally the properties of dilations given by a center and a scale factor. a. A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
M.2HS.40	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
M.2HS.41	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Cluster	Prove geometric theorems.
M.2HS.42	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. Implementation may be extended to include concurrence of perpendicular bisectors and angle bisectors as preparation for M.2HS.C.3. Instructional Note: Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format, and using diagrams without words. Students should be encouraged to focus on the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning.
M.2HS.43	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 $;$; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. Instructional Note: Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format, and using diagrams without words. Students should be encouraged to focus on

	the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning. Implementation of this standard may be extended to include concurrence of perpendicular bisectors and angle bisectors in preparation for the unit on Circles With and Without Coordinates.
M.2HS.44	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other and conversely, rectangles are parallelograms with congruent diagonals. Instructional Note: Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format and using diagrams without words. Students should be encouraged to focus on the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning.

Cluster	Prove theorems involving similarity.
M.2HS.45	Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.
M.2HS.46	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Cluster	Use coordinates to prove simple geometric theorems algebraically.
M.2HS.47	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

Cluster	Define trigonometric ratios and solve problems involving right triangles.
M.2HS.48	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
M.2HS.49	Explain and use the relationship between the sine and cosine of complementary angles.
M.2HS.50	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Cluster	Prove and apply trigonometric identities.
M.2HS.51	Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta)$, $\cos (\theta)$, or $\tan (\theta)$, given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$, and the quadrant of the angle. Instructional Note: Limit θ to angles between 0 and 90 degrees. Connect with the Pythagorean theorem and the distance formula. Extension of trigonometric functions to other angles through the unit circle is included in Mathematics III.

Circles With and Without Coordinates

Cluster	Understand and apply theorems about circles.
M.2HS.52	Prove that all circles are similar.
M.2HS.53	Identify and describe relationships among inscribed angles, radii and chords. Include the relationship between central, inscribed and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
M.2HS.54	Construct the inscribed and circumscribed circles of a triangle and prove properties of angles for a quadrilateral inscribed in a circle.
M.2HS.55(+)	Construct a tangent line from a point outside a given circle to the circle.

Cluster	Find arc lengths and areas of sectors of circles.
M.2HS.56	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Instructional Note: Emphasize the similarity of all circles. Note that by similarity of sectors with the same central angle, arc lengths are proportional to the radius. Use this as a basis for introducing radian as a unit of measure. It is not intended that it be applied to the development of circular trigonometry in this course.

Cluster	Translate between the geometric description and the equation for a conic section.
M.2HS.57	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Instructional Note: Connect the equations of circles and parabolas to prior work with quadratic equations.
M.2HS.58	Derive the equation of a parabola given the focus and directrix. Instructional Note: The directrix should be parallel to a coordinate axis.

Cluster	Use coordinates to prove simple geometric theorems algebraically.
M.2HS.59	Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point (0,2$).)$ Instructional Note: Include simple proofs involving circles.

Cluster	Explain volume formulas and use them to solve problems.
M.2HS.60	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle and informal limit arguments. Instructional Note: Informal arguments for area and volume formulas can make use of the way in which area and volume scale under similarity transformations: when

	one figure in the plane results from another by applying a similarity transformation with scale factor k, its area is k^{2} times the area of the first.
M.2HS.61	Use volume formulas for cylinders, pyramids, cones and spheres to solve problems. Volumes of solid figures scale by k^{3} under a similarity transformation with scale factor k.

