## Transition Mathematics for Seniors

## Overview of the West Virginia College- and Career-Readiness Standards for Mathematics

Included in Policy 2520.2B, the West Virginia College- and Career-Readiness Standards for Mathematics are two types of standards: the Mathematical Habits of Mind and the gradelevel Mathematics Content Standards. These standards address the skills, knowledge, and dispositions that students should develop to foster mathematical understanding and expertise, as well as concepts, skills, and knowledge - what students need to understand, know, and be able to do. The standards also require that the Mathematical Habits of Mind and the grade-level Mathematics Content Standards be connected. These connections are essential to support the development of students' broader mathematical understanding, as students who lack understanding of a topic may rely too heavily on procedures. The Mathematical Habits of Mind must be taught as carefully and practiced as intentionally as the grade-level Mathematics Content Standards are. Neither type should be isolated from the other; mathematics instruction is most effective when these two aspects of the West Virginia College- and Career-Readiness Standards for Mathematics come together as a powerful whole.

## Mathematical Habits of Mind



The eight Mathematical Habits of Mind (MHM) describe the attributes of mathematically proficient students and the expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Habits of Mind provide a vehicle through which students engage with and learn mathematics. As students move from elementary school through high school, the Mathematical Habits of Mind are integrated in the tasks as students engage in doing mathematics and master new and more advanced mathematical ideas and understandings.

The Mathematical Habits of Mind rest on important "processes and proficiencies " with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics' process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding it Up: adaptive reasoning, strategic competence, conceptual understanding, procedural fluency, and productive disposition (NGA/CCSSO 2010).

Ideally, several Mathematical Habits of Mind will be evident in each lesson as they interact and overlap with each other. The Mathematical Habits of Mind are not a checklist; they are the basis for mathematics instruction and learning. To help students persevere in solving problems (MHM1), teachers need to allow their students to struggle productively, and they must be attentive to the type of feedback they provide to students. Dr. Carol Dweck's research (Dweck 2006) revealed that feedback offering praise of effort and perseverance seems to engender a "growth mindset." In Dweck's estimation, growth-minded teachers tell students the truth about being able to close the learning gap between them and their peers and then give them the tools to close the gap (Dweck 2006).

Students who are proficient in the eight Mathematical Habits of Mind are able to use these skills not only in mathematics, but across disciplines and into their lives beyond school, college, and career.

## Policy 2520.2B

## West Virginia College- and Career-Readiness Standards for Mathematics

## Mathematical Habits of Mind

The Mathematical Habits of Mind (hereinafter MHM) describe varieties of expertise that mathematics educators at all levels should develop in their students.

## MHM1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables and graphs or draw diagrams of important features and relationships, graph data and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

## MHM2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand, considering the units involved, attending to the meaning of quantities, not just how to compute them, and knowing and flexibly using different properties of operations and objects.

## MHM3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases and can recognize and use counterexamples.

They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense and ask useful questions to clarify or improve the arguments.

## MHM4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

## MHM5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

## MHM6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

## MHM7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see $7 \times 8$ equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as $2 \times 7$ and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers $x$ and $y$.

## MHM8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$ and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

## Policy 2520.2B

## West Virginia College- and Career-Readiness Standards for Mathematics

## Transition Mathematics for Seniors

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Transition Mathematics for Seniors prepares students for their entry-level credit-bearing liberal studies mathematics course at the postsecondary level. Students will solidify their quantitative literacy by enhancing numeracy and problem solving skills as they investigate and use the fundamental concepts of algebra, geometry, and introductory trigonometry. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from previous courses, the following chart represents the mathematical understandings that will be developed:

| Number and Quantity: <br> The Real Number System <br> The Complex Number System | Algebra: <br> Seeing Structure in Expressions <br> Arithmetic with Polynomials and Rational <br> Expressions <br> Creating Equations <br> Reasoning with Equations and Inequalities |
| :--- | :--- |
| Develop an understanding of basic <br> operations, equivalent representations, <br> and properties of the real and complex <br> number systems. | Create equations or inequalities that <br> model physical situations. <br> Solve systems of equations, with an <br> emphasis on efficiency of solution as <br> well as reasonableness of answers, <br> given physical limitations. |
| Functions: | Geometry: <br> Geometric Measuring and Dimension |
| Interpreting Functions <br> Building Functions | Expressing Geometric Properties with <br> Equations <br> Modeling with Geometry |
| Develop knowledge and understanding <br> of the concept of functions as they use, <br> analyze, represent and interpret <br> functions and their applications. | Use coordinates and to prove geometric <br> properties algebraically. |

Statistics and Probability:Interpreting Categorical and Quantitative
Data
Making Inferences and Justifying
Conclusions

- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.


## Numbering of Standards

The following Mathematics Standards will be numbered continuously. The following ranges relate to the clusters found within Mathematics:

| Number and Quantity - The Real Number System |  |
| :--- | :--- |
| Extend the properties of exponents to rational exponents. | Standard 1-2 |
| Number and Quantity - The Complex Number System |  |
| Use complex numbers in polynomial identities and equations. | Standard 3 |
| Algebra - Seeing Structure in Expressions | Standard 4 |
| Interpret the structure of expressions. | Standards 5-6 |
| Write expressions in equivalent forms to solve problems. | Standards 7-9 |
| Understand the connections between proportional relationship, <br> lines, and linear equations. |  |
| Algebra - Arithmetic with Polynomials and Rational Expressions |  |
| Perform arithmetic operations on polynomials. | Standard 10 |
| Algebra - Creating Equations | Standards 11-14 |
| Create equations that describe numbers or relationships. | Standard 15 |
| Algebra - Reasoning with Equations and Inequalities | Standards 16-18 |
| Understand solving equations as a process of reasoning and <br> explain the reasoning. | Standards 19-21 |
| Solve equations and inequalities in one variable. | Standards 22-23 |
| Solve systems of equations. |  |
| Represent and solve equations and inequalities graphically. |  |
| Functions - Interpreting Functions | Standard 24 |
| Understand the concept of a function and use function notation. | Standards 25-28 |
| Interpret functions that arise in applications in terms of the <br> context. | Standards 29-35 |
| Analyze functions using different representations. |  |
| Functions - Building Functions | Standards 36-37 |
| Build a function that models a relationship between two quantities. | Standards 38-39 |
| Geometry - Geometric Measuring and Dimension | Standards 40-41 |
| Explain volume formulas and use them to solve problems. |  |
| Geometry - Expressing Geometric Properties with Equations |  |
| Use coordinates to prove simple geometric theorems algebraically. |  |

## Geometry - Modeling with Geometry

Apply geometric concepts in modeling situations.
Standard 42

## Statistics and Probability - Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and $\quad$ Standards 43-46 quantitative variables.

| Summarize, represent, and interpret data on a single count or | Standards 47-51 |
| :--- | :--- | measurement variable.

Statistics and Probability - Making Inferences and Justifying Conclusions
Understand and evaluate random processes underlying statistical $\quad$ Standard 52 experiments.

## Number and Quantity - The Real Number System

| Cluster | Extend the properties of exponents to rational exponents. |
| :--- | :--- |
| M.TMS. 1 | Use units as a way to understand problems and to guide the solution of multi- <br> step problems; choose and interpret units consistently in formulas; choose and <br> interpret the scale and the origin in graphs and data displays. |
| M.TMS.2 | Choose a level of accuracy appropriate to limitations on measurement when <br> reporting quantities. |

## Number and Quantity - The Complex Number System

| Cluster | Use complex numbers in polynomial identities and equations. |
| :--- | :--- |
| M.TMS.3 | Solve quadratic equations with real coefficients that have complex solutions. |

## Algebra - Seeing Structure in Expressions

| Cluster | Interpret the structure of expressions. |
| :--- | :--- |
| M.TMS.4 | Use the structure of an expression to identify ways to rewrite it. For example, <br> see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can <br> be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. |


| Cluster | Write expressions in equivalent forms to solve problems. |
| :--- | :--- |
| M.TMS.5 | Choose and produce an equivalent form of an expression to reveal and explain <br> properties of the quantity represented by the expression. <br> a. Factor a quadratic expression to reveal the zeros of the function it <br> defines. |
| b. Complete the square in a quadratic expression to reveal the maximum or |  |
| minimum value of the function it defines. |  |


| Cluster | Understand the connections between proportional relationship, lines, and <br> linear equations. |
| :--- | :--- |
| M.TMS.7 | Graph proportional relationships, interpreting the unit rates as the slope of the <br> graph. Compare two different proportional relationships represented in |


|  | different ways. For example, compare a distance-time graph to a distance-time <br> equation to determine which of two moving objects has greater speed. |
| :--- | :--- |
| M.TMS.8 | Use similar triangles to explain why the slope $m$ is the same between any two <br> distinct points on a non-vertical line in the coordinate plan; derive the equation <br> $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line <br> intercepting the vertical axis at $b$. |
| M.MTS.9 | Solve linear equations in one variable. |

## Algebra - Arithmetic with Polynomials and Rational Expressions

| Cluster | Perform arithmetic operations on polynomials. |
| :--- | :--- |
| M.TMS.10 | Understand that polynomials form a system analogous to the integers, namely, <br> they are closed under the operations of addition, subtraction, and <br> multiplication; add, subtract and multiply polynomials. |

## Algebra - Creating Equations

| Cluster | Create equations that describe numbers or relationships. |
| :--- | :--- |
| M.TMS. 11 | Create equations and inequalities in one variable and use them to solve <br> problems. Include equations arising from linear and quadratic functions and <br> simple rational and exponential functions. |
| M.TMS.12 | Create equations in two or more variables to represent relationships between <br> quantities; graph equations on coordinate axes with labels and scales. |
| M.TMS.13 | Represent constraints by equations or inequalities and by systems of equations <br> and/or inequalities and interpret solutions as viable or nonviable options in a <br> modeling context. For example, represent inequalities describing nutritional <br> and cost constraints on combinations of different foods. |
| M.TMS.14 | Rearrange formulas to highlight a quantity of interest, using the same reasoning <br> as in solving equations. |

## Algebra - Reasoning with Equations and Inequalities

| Cluster | Understand solving equations as a process of reasoning and explain the <br> reasoning. |
| :--- | :--- |
| M.TMS. 15 | Solve simple rational and radical equations in one variable and give examples <br> showing how extraneous solutions may arise. |


| Cluster | Solve equations and inequalities in one variable. |
| :--- | :--- |
| M.TMS.16 | Solve linear equations and inequalities in one variable, including equations <br> with coefficients represented by letters. |
| M.TMS.17 | Explain each step in solving a simple equation as following from the equality of <br> numbers asserted at the previous step, starting from the assumption that the <br> original equation has a solution. Construct a viable argument to justify a <br> solution method. |
| M.TMS.18 | Solve quadratic equations in one variable. Use the method of completing the <br> square to transform any quadratic equation in x into an equation of the form |


|  | $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this <br> form. Solve quadratic equations by inspection (e.g., for $\left.x^{2}=49\right)$, taking square <br> roots, completing the square, the quadratic formula and factoring, as <br> appropriate to the initial form of the equation. Recognize when the quadratic <br> formula gives complex solutions and write them as a $\pm$ bi for real numbers a <br> and b. |
| :--- | :--- |


| Cluster | Solve systems of equations. |
| :--- | :--- |
| M.TMS. 19 | Prove that, given a system of two equations in two variables, replacing one <br> equation by the sum of that equation and a multiple of the other produces a <br> system with the same solutions. |
| M.TMS.20 | Solve a simple system consisting of a linear equation and a quadratic equation <br> in two variables algebraically and graphically. |
| M.TMS.21 | Explain why the $x$-coordinates of the points where the graphs of the equation y <br> $=f(x)$ and $y=g(x)$ intersect are the solution of the equation $f(x)=g(x) ;$ find the <br> solution approximately (e.g., using technology to graph the functions, make <br> tables of values or find successive approximations). |


| Cluster | Represent and solve equations and inequalities graphically. |
| :--- | :--- |
| M.TMS.22 | Solve systems of linear equations exactly and approximately (e.g., with graphs), <br> focusing on pairs of linear equations in two variables. |
| M.TMS.23 | Graph the solutions to a linear inequality in two variables as a half-plane <br> (excluding the boundary in the case of a strict inequality) and graph the <br> solution set to a system of linear inequalities in two variables as the <br> intersection of the corresponding half-planes. |

## Functions - Interpreting Functions

| Cluster | Understand the concept of a function and use function notation. |
| :--- | :--- |
| M.TMS. 24 | Understand a function from one set (called the domain) to another set (called <br> the range) assigns to each element of the domain exactly one element of the <br> range. If $f$ is a function and $x$ is an element of its domain, then $f(x)$ denotes the <br> output of $f$ corresponding to the input $x$. The graph of $f$ is the graph of the <br> equation $y=f(x)$. |
| Cluster | Interpret functions that arise in applications in terms of the context. |
| M.TMS.25 | Write arithmetic and geometric sequences both recursively and with an explicit <br> formula, use them to model situations, and translate between the two forms. |
| M.TMS.26 | Interpret the parameters in a linear or exponential function in terms of a <br> context. |
| M.TMS.27 | For a function that models a relationship between two quantities, interpret key <br> features of graphs and tables in terms of the quantities, and sketch graphs <br> showing key features given a verbal description of the relationship. Key <br> features include: intercepts; intervals where the function is increasing, <br> decreasing, positive or negative; relative maximums and minimums; |


|  | symmetries; end behavior; and periodicity. |
| :--- | :--- |
| M.TMS.28 | Distinguish between situations that can be modeled with linear functions and <br> with exponential functions. |


| Cluster | Analyze functions using different representations. |
| :--- | :--- |
| M.TMS.29 | Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a <br> straight line, give examples of functions that are not linear. |
| M.TMS.30 | Describe qualitatively the functional relationship between two quantities by <br> analyzing a graph. |
| M.TMS.31 | Identify the effect on the graph of replacing $\mathrm{f}(\mathrm{x})$ by f(x) + $\mathrm{k}, \mathrm{k} \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$, and $\mathrm{f}(\mathrm{x}+$ <br> k) for specific values of k (both positive and negative); find the value of k given <br> the graphs. |
| M.TMS.32 | Graph functions expressed symbolically and show key features of the graph, by <br> hand in simple cases and using technology for more complicated cases. <br> a. Graph linear and quadratic functions and show intercepts, maxima, and <br> minima. <br> b. Graph polynomial functions, identifying zeros when suitable <br> factorizations are available, and showing end behavior. |
| M.TMS.33 | Observe using graphs and tables that a quantity increasing exponentially <br> eventually exceeds a quantity increasingly linearly, quadratically, or (more <br> generally) as a polynomial function. |
| M.TMS.34 | Write a function defined by an expression in different but equivalent forms to <br> reveal and explain different properties of the function. Use the process of <br> factoring and completing the square in a quadratic function to show zeros, <br> extreme values, and symmetry of the graph, and interpret these in terms of a <br> context. |
| M.TMS.35 | Compare properties of two functions each represented in a different way <br> (algebraically, graphically, numerically in tables, or by verbal descriptions). |

## Functions - Building Functions

| Cluster | Build a function that models a relationship between two quantities. |
| :--- | :--- |
| M.TMS.36 | Construct linear and exponential functions, including arithmetic and geometric <br> sequences, given a graph, a description of a relationship, or two input-output <br> pairs (include reading these from a table). |
| M.TMS.37 | Write a function that describes a relationship between two quantities. <br> a. Combine standard function types using arithmetic operations. For <br> example, build a function that models the temperature of a cooling <br> body by adding a constant function to a decaying exponential, and <br> relate these functions to the model. |
|  | b. Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the <br> atmosphere as a function of height, and $\mathrm{h}(\mathrm{t})$ is the height of a weather <br> balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t})$ is the temperature at the <br> location of the weather balloon as a function of time. |

## Geometry - Geometric Measuring and Dimension

| Cluster | Explain volume formulas and use them to solve problems. |
| :--- | :--- |
| M.TMS.38 | Give an informal argument for the formulas for the circumference of a circle, <br> area of a circle, volume of a cylinder, pyramid, and cone. Use dissection <br> arguments, Cavalieri's principle, and informal limit arguments. |
| M.TMS.39 | Give an informal argument using Cavalieri's principle for the formulas for the <br> volume of a sphere and other solid figures. |

Geometry - Expressing Geometric Properties with Equations

| Cluster | Use coordinates to prove simple geometric theorems algebraically |
| :--- | :--- |
| M.TMS.40 | Use coordinates to prove simple geometric theorems algebraically. For <br> example, prove or disprove that a figure defined by four given points in the <br> coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on <br> the circle centered at the origin and containing the point $(0,2)$. |
| M.TMS.41 | Use coordinates to compute perimeters of polygons and areas of triangles and <br> rectangles, (e.g., using the distance formula). |

Geometry - Modeling with Geometry

| Cluster | Apply geometric concepts in modeling situations. |
| :--- | :--- |
| M.TMS.42 | Apply geometric methods to solve design problems (e.g., designing an object <br> or structure to satisfy physical constraints or minimize cost; working with <br> topographic grid systems based on ratios). |

Statistics and Probability - Interpreting Categorical \& Quantitative Data

| Cluster | Summarize, represent, and interpret data on two categorical and <br> quantitative variables. |
| :--- | :--- |
| M.TMS.43 | Represent data on two quantitative variables on a scatter plot, and describe <br> how the variables are related. Interpret linear models. |
| M.TMS.44 | Interpret the slope (rate of change) and the intercept (constant term) of a <br> linear model in the context of the data. |
| M.TMS.45 | Know that straight lines are widely used to model relationships between two <br> quantitative variables. For scatter plots that suggest a linear association, <br> informally fit a straight line, and informally assess the model fit by judging <br> the closeness of the data points to the line. |
| M.TMS.46 | Summarize categorical data for two categories in two-way frequency tables. <br> Interpret relative frequencies in the context of the data (including joint, <br> marginal, and conditional relative frequencies). Recognize possible <br> associations and trends in the data. |


| Cluster | Summarize, represent, and interpret data on a single count or measurement <br> variable. |
| :--- | :--- |
| M.TMS.47 | Represent data with plots on the real number line (dot plots, histograms, and <br> box plots). |


| M.TMS.48 | Use statistics appropriate to the shape of the data distribution to compare <br> center (median, mean) and spread (interquartile range, standard deviation) <br> of two or more different data sets. |
| :--- | :--- |
| M.TMS.49 | Interpret differences in shape, center, and spread in the context of the data <br> sets, accounting for possible effects of extreme data points (outliers). |
| M.TMS.50 | Computer (using technology) and interpret the correlation coefficient of a <br> linear fit. |
| M.TMS.51 | Distinguish between correlation and causation. |

Statistics and Probability - Interpreting Categorical \& Quantitative Data

| Cluster | Understand and evaluate random processes underlying statistical <br> experiments |
| :--- | :--- |
| M.TMS.52 | Understand statistics as a process for making inferences about population <br> parameters based on a random sample from that population. |

