Applied Statistics

Domain	Exploring Data	
Cluster	Select appropriate graphical and numerical methods to explore data.	
Standard(s)	M.ASHS.2	Calculate appropriate measures of center, variability, and position for data. Instructional note: Include comparisons of mean vs. median, standard deviation vs. IQR.

Content Examples

» Finding mean, median, and mode - measures of central tendency: https://www.youtube.com/watch?v=eMPspP_Rkio
» Calculating mean, standard deviation and variance for a sample:
https://www.youtube.com/watch?v=qqOyy_NjflU
» How to find the interquartile range and any outliers:
https://www.youtube.com/watch?v=STSP8gTSdT8
» 1 Variable Stats on TI-84:
https://www.youtube.com/watch?v=hf8ziCMsLvs

Relevant Content

Vocabulary

» Mean: Sum of the values divided by the total number of values
» Median: Midpoint of the data array, symbolized as MD
» Mode: The value that occurs most often in the data set
» Unimodal: A data set with only one value that occurs with the greatest frequency
» Bimodal: A data set with only two values that occurs with the same greatest frequency
" Multimodal: A data set with more than two values that occurs with the same greatest frequency
» Midrange: The sum of the lowest and highest values in the data set divided by two, symbolized as MR
» Weighted mean: Type of mean that considers additional factors when the values are not all equally represented
» Positively or right-skewed shape: The majority of the data values are left of the mean and cluster at the lower end of the distribution, with the tail to the right
» Negatively or left-skewed shape: The majority of the data values are right of the mean and cluster at the upper end of the distribution, with the tail to the left
» Symmetrical distribution: Data values are evenly distributed on both sides of the mean
» Range: The difference between the maximum and minimum values
" Variance: The average of the squares of the distance each value is from the mean, symbolized as σ^{2}
» Standard deviation: The square root of the variance, symbolized as σ
» Coefficient of variation: A statistic used to compare standard deviations when the units are different, symbolized as CVar
» Percentiles: Divides the data set into 100 equal groups
" Quartiles: Division of the distribution into four groups, separated by $Q_{1}, Q_{2}, \& Q_{3}$, where Q_{1} is the 25th percentile, Q_{2} is the 50th percentile or the median, and Q_{3} is the 75th percentile
» Interquartile range (IQR): The range of the middle 50% of data (difference between Q_{1} and Q_{3})
» Deciles: Division of the distribution into 10 groups, separated by $D_{1}, D_{2}, D_{3}, \ldots, D_{9}$, where $D_{1}, D_{2}, D_{3}, \ldots, D_{9}$ corresponds to $P_{10}, P_{20}, P_{30}, \ldots, P_{90}$
" Outliers: An extremely high or low data value when compared to the rest of the data values

Formulas

" Sample mean: $\bar{x}=\frac{\sum x_{i}}{n}$, where n is the total number of values in the sample
» Population mean: $\mu=\frac{n}{N} x_{i}$, where N is the total number of values in the population
» Mean for grouped data: $\bar{x}=\underline{\sum f \cdot x_{m}}$, where $\sum f \cdot x_{m}$ represents the sum of the product of the frequency (f) and the midpoint $\left(x_{m}\right)$ for each class
" Midrange: $M R=\frac{x_{\text {min }}+x_{\text {max }}}{2}$
" Weighted mean: $\bar{x}=\frac{2}{\sum w} w x_{i}$
$x_{1}, x_{2}, \ldots, x_{n}$. where $w_{1}, w_{2}, \ldots, w_{n}$ are the corresponding weights of the values
» Range: $R=x_{\text {max }}-x_{\text {min }}$
" Variance: $\sigma^{2}=\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{N}$, where x_{i} is an individual value, μ is the population mean, and N is the population size
"Standard deviation: $\sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}}$, where x_{i} is an individual value μ is the population mean, and N is the population size
" Sample variance: $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$, or alternately as $s^{2}=\frac{n\left(\sum x_{i}^{2}\right)-\left(\sum x_{i}\right)^{2}}{n(n-1)}$, where x_{i} is an individual value, \bar{x} is the sample mean, and n is the sample size
" Sample standard deviation: $s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$, or alternately as $s=\sqrt{\frac{n\left(\sum x_{i}^{2}\right)-\left(\sum x_{i}\right)^{2}}{n(n-1)}}$, where x_{i} is an individual value, \bar{x} is the sample mean, and n is the sample size
" Coefficient of variation for populations: CVar $=\frac{\sigma}{\mu} \cdot 100 \%$
" Coefficient of variation for samples: CVar $=\frac{s}{\bar{x}} \cdot 100 \%$
» Range Rule of Thumb: $s \approx \frac{x_{\max }-x_{\text {min }}}{4}$
" Percentile Formula: Percentile $=\frac{\left(\text { number of values below }_{i}\right)+0.5}{\text { total number of values }} \cdot 100 \%$

Measures of Central Tendency

» The Mean

- Is found by using all the values of the data
- Is more consistent than the median or mode when samples are taken from the same population
- Is used in computing other statistics, such as the variance
- Is unique and not necessarily one of the data values
- Is not used for the data in a frequency distribution that has an open-ended class
- Is affected by extremely high or low outliers, and may not be the appropriate average to use in these situations
» The Median
- Is used to find the center or middle value of a data set
- Is used when it is necessary to find out whether the data values fall into the upper half or lower half of the distribution
- Is used for an open-ended distribution
- Is affected less than the mean by extremely high or extremely low values
» The Mode
- Is used when the most typical case is desired
- Is the easiest average to compute
- Is an appropriate measure when the data are nominal, such as religious preference, gender, or political affiliation
- Is not always unique
" The Midrange
- Is easy to compute
- Is the midpoint
- Is affected by extremely high or low values in a data set

Variance and Standard Deviation

» Are used to determine the spread of the data
» Are used to determine the consistency of a variable
» Are used to determine the number of data values that fall within a specified interval
» Are used to compare two or more data sets to determine which is more variable

Identifying Outliers

» Arrange the data in order and find $Q_{1} \& Q_{3}$
» Find $I Q R$
» Check the data set for any data value that is smaller than $Q_{1}-1.5(I Q R)$ or larger than $Q_{3}+1.5(I Q R)$

Measures of Center and Standard Deviation:
https://www.learner.org/series/against-all-odds-inside-statistics/

Assessment Links or Tasks

Analyzing Box Plots: https://www.cpalms.org/Public/PreviewResourceLesson/Preview/128715

