Applied Statistics

Domain	Exploring Data	
Cluster	Select appropriate graphical and numerical methods to explore data.	
Standard(s)	M.ASHS.2	Calculate appropriate measures of center, variability, and position for data. Instructional note: Include comparisons of mean vs. median, standard deviation vs. IQR.

Content Examples

- » Finding mean, median, and mode measures of central tendency: https://www.youtube.com/watch?v=eMPspP_Rkio
- » Calculating mean, standard deviation and variance for a sample: https://www.youtube.com/watch?v=qqOyy_NjflU
- » How to find the interquartile range and any outliers: https://www.youtube.com/watch?v=STSP8gTSdT8
- » 1 Variable Stats on TI-84: https://www.youtube.com/watch?v=hf8ziCMsLvs

Relevant Content

Vocabulary

- » Mean: Sum of the values divided by the total number of values
- » Median: Midpoint of the data array, symbolized as MD
- » Mode: The value that occurs most often in the data set
- » Unimodal: A data set with only one value that occurs with the greatest frequency
- » Bimodal: A data set with only two values that occurs with the same greatest frequency
- » Multimodal: A data set with more than two values that occurs with the same greatest frequency
- » Midrange: The sum of the lowest and highest values in the data set divided by two, symbolized as *MR*
- » Weighted mean: Type of mean that considers additional factors when the values are not all equally represented
- » Positively or right-skewed shape: The majority of the data values are left of the mean and cluster at the lower end of the distribution, with the tail to the right
- » Negatively or left-skewed shape: The majority of the data values are right of the mean and cluster at the upper end of the distribution, with the tail to the left

- » Symmetrical distribution: Data values are evenly distributed on both sides of the mean
- » Range: The difference between the maximum and minimum values
- » Variance: The average of the squares of the distance each value is from the mean, symbolized as σ^2
- Standard deviation: The square root of the variance, symbolized as σ »
- » Coefficient of variation: A statistic used to compare standard deviations when the units are different, symbolized as CVar
- » Percentiles: Divides the data set into 100 equal groups
- » Quartiles: Division of the distribution into four groups, separated by Q_1 , Q_2 , & Q_3 , where Q_1 is the 25th percentile, Q_2 is the 50th percentile or the median, and Q_3 is the 75th percentile
- » Interquartile range (IQR): The range of the middle 50% of data (difference between Q_1 and Q_3)
- » Deciles: Division of the distribution into 10 groups, separated by $D_1, D_2, D_3, \ldots, D_9$, where $D_1, D_2, D_3, \ldots, D_9$ corresponds to $P_{10}, P_{20}, P_{30}, \ldots, P_{90}$
- » Outliers: An extremely high or low data value when compared to the rest of the data values

Formulas

- » Sample mean: $\bar{x} = \frac{\sum x_i}{n}$, where n is the total number of values in the sample » Population mean: $\mu = \frac{\sum x_i}{N}$, where N is the total number of values in the population » Mean for grouped data: $\bar{x} = \frac{\sum f \cdot x_m}{n}$, where $\sum f \cdot x_m$ represents the sum of the product of the frequency (f) and the midpoint (x_m) for each class
- » Midrange: $MR = \frac{x_{\min} + x_{\max}}{2}$
- Weighted mean: $\bar{x} = \frac{2}{\sum w_i}$, where $w_1, w_2, ..., w_n$ are the corresponding weights of the values $x_1, x_2, ..., x_n$
- » Range: $R = x_{\max} x_{\min}$ » Variance: $\sigma^2 = \frac{\sum_{i=1}^{N} (x_i \mu)^2}{N}$, where x_i is an individual value, μ is the population mean, and N is the population size
- » Standard deviation: $\sigma = \sqrt{\frac{\sum(x_i \mu)^2}{N}}$, where x_i is an individual value μ is the population mean, and N is the population size
- » Sample variance: $s^2 = \frac{\sum (x_i \overline{x})^2}{n-1}$, or alternately as $s^2 = \frac{n(\sum x_i^2) (\sum x_i)^2}{n(n-1)}$, where x_i is an individual value, \overline{x} is the sample mean, and n is the sample size
- » Sample standard deviation: $s = \sqrt{\frac{\sum(x_i \overline{x})^2}{n-1}}$, or alternately as $s = \sqrt{\frac{n(\sum x_i^2) (\sum x_i)^2}{n(n-1)}}$, where x_i is an individual value, \overline{x} is the sample mean, and n is the sample size
- » Coefficient of variation for populations: $CVar = \frac{\sigma}{u} \cdot 100\%$
- » Coefficient of variation for samples: $CVar = \frac{s}{\overline{r}} \cdot 100\%$
- » Range Rule of Thumb: $s \approx \frac{x_{max} x_{min}}{4}$ » Percentile Formula: $Percentile = \frac{(number of values below x_i) + 0.5}{total number of values} \cdot 100\%$

Measures of Central Tendency

- » The Mean
 - Is found by using all the values of the data
 - Is more consistent than the median or mode when samples are taken from the same population
 - Is used in computing other statistics, such as the variance
 - Is unique and not necessarily one of the data values
 - Is not used for the data in a frequency distribution that has an open-ended class
 - Is affected by extremely high or low outliers, and may not be the appropriate average to use in these situations
- » The Median
 - Is used to find the center or middle value of a data set
 - Is used when it is necessary to find out whether the data values fall into the upper half or lower half of the distribution
 - Is used for an open-ended distribution
 - Is affected less than the mean by extremely high or extremely low values
- » The Mode
 - Is used when the most typical case is desired
 - Is the easiest average to compute
 - Is an appropriate measure when the data are nominal, such as religious preference, gender, or political affiliation
 - Is not always unique
- » The Midrange
 - Is easy to compute
 - Is the midpoint
 - Is affected by extremely high or low values in a data set

Variance and Standard Deviation

- » Are used to determine the spread of the data
- » Are used to determine the consistency of a variable
- » Are used to determine the number of data values that fall within a specified interval
- » Are used to compare two or more data sets to determine which is more variable

Identifying Outliers

- » Arrange the data in order and find $\it Q_1~\&~Q_3$
- » Find *IQR*
- » Check the data set for any data value that is smaller than $Q_1 1.5(IQR)$ or larger than $Q_3 + 1.5(IQR)$

Measures of Center and Standard Deviation:

https://www.learner.org/series/against-all-odds-inside-statistics/

Assessment Links or Tasks

Analyzing Box Plots: https://www.cpalms.org/Public/PreviewResourceLesson/Preview/128715