Applied Statistics

math 4 life

Domain	Exploring Data	
Cluster	Select appropriate graphical and numerical methods to explore data.	
Standard(s)	M.ASHS.7	Use appropriate measures of center and spread to describe a distribution. Instructional Note: Emphasize that only some data are well described by a normal distribution.

Content Examples

» Describing the shape, center and spread of a distribution: https://www.youtube.com/watch?v=KTkizHDaFWw
» Measures of center and spread to describe skewness:
https://www.youtube.com/watch?v=DNabd1us_Y4
» Using Chebyshev's Theorem:
https://www.youtube.com/watch?v=uMgK000XFhA
» Using the Empirical Rule:
https://www.youtube.com/watch?v=T7-eeg6rhjY

Relevant Content

Vocabulary

» Normal distribution: continuous, symmetric, bell-shaped curve showing a particular distribution of probability over the values of a random variable

Formulas
Pearson's Index of Skewness: $P=\frac{3(\bar{x}-\text { median })}{S}, P<0 \Rightarrow$ the data are skewed left, $P=0 \Rightarrow$ the data are symmetric, $P>0 \Rightarrow$ the data are skewed right

Skewness Facts

» Measures of location

- Mean < median < mode, the distribution is negative skewed
- Mean = median = mode, the distribution is symmetric
- Mean > median > mode, the distribution is positive skewed
» Measures of dispersion
- $Q_{3}-Q_{2}<Q_{2}-Q_{1}$, the distribution is negative skewed
- $Q_{3}-Q_{2}=Q_{2}-Q_{1}$, the distribution is symmetric
- $Q_{3}-Q_{2}>Q_{2}-Q_{1}$, the distribution is positive skewed

Normal Distribution Facts

» The distribution curve is bell-shaped.
» The mean, median, and mode are equal and are located midway on the distribution.
» The distribution is unimodal.
» The curve is symmetric about the mean.
» The curve is continuous.
» The curve approaches the x axis as $x \rightarrow-\infty$ and as $x \rightarrow \infty$.
» The area under the curve is equal to 1.00 , or 100%.
» The area under the curve that lies within 1 standard deviation of the mean is approximately 0.68 , or 68\%.
" The area under the curve that lies within 2 standard deviations of the mean is approximately 0.95 , or 95%.
» The area under the curve that lies within 3 standard deviations of the mean is approximately 0.997 , or 99.7%.

Theorems

Chebyshev's Theorem: The proportion of values from a data set within k standard deviations of the mean is at least $1-\frac{1}{k^{2}}$, where $k>1$. This applies to any distribution regardless of its shape.

The Empirical (Normal) Rule

» Approximately 68% of the data values will fall within 1 standard deviation of the mean.
" Approximately 95% of the data values will fall within 2 standard deviations of the mean.
» Approximately 99.7% of the data values will fall within 3 standard deviations of the mean.

Assessment Links or Tasks

" Should Statistics be Shapely? https://www.cpalms.org/Public/PreviewResourceLesson/Preview/127994
» Normal distribution tasks:
https://study.com/academy/lesson/normal-distribution-activities-games.html

