Mathematics - Grade 5

- math4life

Mathematics - Grade 5

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in the fifth grade will focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; (3) developing an understanding of volume. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students in fifth grade will continue developing mathematical proficiency in a developmentallyappropriate progressions of standards. Continuing the skill progressions from fourth grade, the following chart represents the mathematical understandings that will be developed in fifth grade:

Operations and Algebraic Thinking	Number and Operations in Base Ten
- Write and interpret numerical expressions. - Analyze mathematical patterns and relationships.	- Understand the place value system. - Generalize the place-value system to include decimals, and calculate with decimals to the hundredths place (two places after the decimal). - Multiply whole numbers quickly and accurately, for example 1,638 $\times 753$, and divide whole numbers in simple cases, such as dividing 6,971 by 63 .
Number and Operations- Fractions	Measurement and Data
- Add and subtract fractions with like and unlike denominators (e.g., $2 \sqrt{ } 4-113$), and solve word problems of this kind. - Multiply fractions; divide fractions in simple cases; and solve related word problems (e.g., find the area of a rectangle with fractional side lengths; determine how many 13 -cup servings are in 2 cups of raisins; determine the size of a share if 9 people share a 50 -pound sack of rice equally or if 3 people share $1 / 2$ pound of chocolate equally).	- Convert like measurement units within a given measurement system. - Make a line plot to display a data set with fractional units of measure and interpret the data to solve problems. - Geometric measurement: Understand the concept of volume, and solve word problems that involve volume.
Geometry	
- Graph points on the coordinate plane to solve real-world and mathematical problems. - Classify two-dimensional figures into categories based on their properties.	

Numbering of Standards

The following Mathematics Standards will be numbered continuously. The following ranges relate to the clusters found within Mathematics:

Operations and Algebraic Thinking	
Write and interpret numerical expressions.	Standards 1-2
Analyze patterns and relationships.	Standard 3
Number and Operations in Base Ten	Standard 4-7
Understand the place value system. Standards 8-10 Pundredths.	Number and Operations- Fractions
Use equivalent fractions as a strategy to add and subtract fractions.	
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.	Standards 13-17
Measurement and Data	Standard 18
Convert like measurement units within a given measurement system.	Standard 19
Represent and interpret data.	Standards 20-22
Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.	Standards 23-24
Geometry	Standards 25-26

Operations and Algebraic Thinking

Cluster	Write and Interpret numerical expressions.
M.5.1	Use parentheses, brackets or braces in numerical expressions and evaluate expressions with these symbols.
M.5.2	Write simple expressions that record calculations with numbers and interpret numerical expressions without evaluating them. (e.g., Express the calculation "add 8 and 7, then multiply by 2" as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.)

Cluster	Analyze patterns and relationships
M.5.3	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. (e.g., Given the rule "Add 3" and the starting number 0 and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.)

Number and Operations in Base Ten

Cluster	Understand the place value system
M.5.4	Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.
M.5.5	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10.
M.5.6	Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names and expanded form (e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+$ $2 \times(1 / 1000))$. b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, = and < symbols to record the results of comparisons.
M.5.7	Use place value understanding to round decimals to any place.
Cluster	Perform operations with multi-digit whole numbers and with decimals to hundredths.
M.5.8	Fluently multiply multi-digit whole numbers using the standard algorithm.
M.5.9	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
M.5.10	Add, subtract, multiply and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between related operations, relate the strategy to a written method and explain the reasoning used.

Cluster	Use equivalent fractions as a strategy to add and subtract fractions.
M.5.11	Add and subtract fractions with unlike denominators, including mixed numbers, by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators (e.g., $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$). Instructional Note: In general, $a / b+c / d=(a d+b c) / b d$.
M.5.12	Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers (e.g., recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$).
Cluster	Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
M.5.13	Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers by using visual fraction models or equations to represent the problem. (e.g., Interpret 3/4 as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?)
M.5.14	Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. (e.g., Use a visual fraction model to show $(2 / 3) \times 4=8 / 3$ and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$.) Instructional Note: In general, $(a / b) \times(c / d)=a c / b d$. b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas.
M.5.15	Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .

M.5.16	Solve real-world problems involving multiplication of fractions and mixed numbers by using visual fraction models or equations to represent the problem.
M.5.17	Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Instructional Note: Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division, but division of a fraction by a fraction is not a requirement at this grade. a. Interpret division of a unit fraction by a non-zero whole number and compute such quotients. (e.g., Create a story context for (1/3) $\div 4$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) $\div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3)$.
b. Interpret division of a whole number by a unit fraction and compute such	
quotients. (e.g., Create a story context for $4 \div(1 / 5)$ and use a visual fraction model	
to show the quotient. Use the relationship between multiplication and division to	
explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4)$.	

Measurement and Data

Cluster	Convert like measurement units within a given measurement system.
M.5.18	Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m) and use these conversions in solving multi-step, real-world problems.
Cluster	Represent and interpret data.
M.5.19	Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. (e.g., Given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally).
Cluster	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
M.5.20	Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume and can be used to measure volume.
b. A solid figure which can be packed without gaps or overlaps using b unit cubes is	
said to have a volume of b cubic units.	

M.5.21	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
M.5.22	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes (e.g., to represent the associative property of multiplication).
b. Apply the formulas $V=1 \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{b} \times \mathrm{h}$ for rectangular prisms to find	
volumes of right rectangular prisms with whole number edge lengths in the	
context of solving real-world and mathematical problems.	
c. Recognize volume as additive and find volumes of solid figures composed of two	
non-overlapping right rectangular prisms by adding the volumes of the non-	
overlapping parts, applying this technique to solve real-world problems.	

Geometry

Cluster	Graph points on the coordinate plane to solve real-world and mathematical problems.
M.5.23	Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines, the origin, arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).
M.5.24	Represent real-world mathematical problems by graphing points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation.
Cluster	Classify two-dimensional figures into categories based on their properties.
M.5.25	Understand that attributes belonging to a category of two dimensional figures also belong to all subcategories of that category (e.g., all rectangles have four right angles and squares are rectangles, so all squares have four right angles).
M.5.26	Classify two-dimensional figures in a hierarchy based on properties.

