Mathematics - Grade 8

Mathematics - Grade 8

All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in the eighth grade will focus on three critical areas: 1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity and congruence and understanding and applying the Pythagorean Theorem. Mathematical habits of mind, which should be integrated in these content areas, include: making sense of problems and persevering in solving them, reasoning abstractly and quantitatively; constructing viable arguments and critiquing the reasoning of others; modeling with mathematics; using appropriate tools strategically; attending to precision, looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. Students in eighth grade will continue developing mathematical proficiency in a developmentally-appropriate progressions of standards. Continuing the skill progressions from seventh grade, the following chart represents the mathematical understandings that will be developed in eighth grade:

The Number System	Expressions and Equations
- Understand that every number has a decimal expansion and use these to compare the size of irrational numbers.	- Work with positive and negative exponents, square root and cube root symbols, and scientific notation (e.g., Evaluate $36+64$; estimate world population as 7×10^{9}). - Solve linear equations (e.g., $-x+5(x+\sqrt{3})$ $=2 x-8$); solve pairs of linear equations (e.g., $x+6 y=-1$ and $2 x-2 y=12$); and write equations to solve related word problems.
Functions	Geometry

- Understand slope, and relating linear equations in two variables to lines in the coordinate plane.
- Understand functions as rules that assign a unique output number to each input number; use linear functions to model relationships.

Statistics and Probability

- Analyze statistical relationships by using a best-fit line (a straight line that models an association between two quantities).

Geometry

- Understand congruence and similarity using physical models, transparencies, or geometry software (e.g., Given two congruent figures, show how to obtain one from the other by a sequence of rotations, translations, and/or reflections).

Numbering of Standards

The following Mathematics Standards will be numbered continuously. The following ranges relate to the clusters found within Mathematics:

The Number System

Know that there are numbers that are not rational, and approximate them by
Standards 1-2 rational numbers.

Expressions and Equations

Work with radicals and integer exponents.	Standards 3-6
Understand the connections between proportional relationships, lines, and linear equations.	Standards 7-8
Analyze and solve linear equations and pairs of simultaneous linear equations.	Standards 9-10

Functions

Define, evaluate, and compare functions.	Standards 11-13
Use functions to model relationships between quantities.	Standards 14-15
Geometry	Standards 16-20
Understand congruence and similarity using physical models, transparencies, or geometry software.	Standards 21-23
Understand and apply the Pythagorean Theorem.	Standard 24
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.	

Statistics and Probability

Investigate patterns of association in bivariate data.	Standards 25-28

The Number System

Cluster	Know that there are numbers that are not rational, and approximate them by rational numbers.
M.8.1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually and convert a decimal expansion which repeats eventually into a rational number. Instructional Note: A decimal expansion that repeats the digit 0 is often referred to as a "terminating decimal."
M.8.2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram and estimate the value of expressions such as π^{2}. (e.g., By truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.)

Cluster	Work with radicals and integer exponents.
M.8.3	Know and apply the properties of integer exponents to generate equivalent numerical expressions. (e.g., $\left.3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27.\right)$
M.8.4	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
M.8.5	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (e.g., Estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.)
M.8.6	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. (e.g., Use millimeters per year for seafloor spreading.) Interpret scientific notation that has been generated by technology.
Cluster	Understand the connections between proportional relationships, lines, and linear equations.
M.8.7	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. (e.g., Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.)
M.8.8	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y $=$ mx for a line through the origin and the equation y $=$ mx $+b$ for a line intercepting the vertical axis at b.
Cluster	Analyze and solve linear equations and pairs of simultaneous linear equations.
M.8.9	Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, ~ a ~=a, ~ o r ~ a ~=~ b ~ r e s u l t s ~(w h e r e ~ a ~ a n d ~ b ~ a r e ~$ different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

M.8.10	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b.Solve systems of two linear equations in two variables algebraically and estimate solutions by graphing the equations. Solve simple cases by inspection. (e.g., $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .)	
c.Solve real-world and mathematical problems leading to two linear equations in two variables. (e.g., Given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.)	

Functions

Cluster	Define, evaluate, and compare functions.
M.8.11	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. Instructional Note: Function notation is not required in grade 8.
M.8.12	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (e.g., Given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.)
M.8.13	Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (e.g., The function $\mathrm{A}=\mathrm{s}^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.)
Cluster	Use functions to model relationships between quantities
M.8.14	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
M.8.15	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Geometry

Cluster	Understand congruence and similarity using physical models, transparencies, or geometry software.
M.8.16	Verify experimentally the properties of rotations, reflections and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.
M.8.17	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
M.8.18	Describe the effect of dilations, translations, rotations and reflections on two- dimensional figures using coordinates.
M.8.19	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations and dilations; given two similar two dimensional figures, describe a sequence that exhibits the similarity between them.
M.8.20	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. (e.g., Arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.)
Cluster	Understand and apply the Pythagorean Theorem.
M.8.21	Explain a proof of the Pythagorean Theorem and its converse.
M.8.22	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
M.8.23	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Cluster	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
M.8.24	Know the formulas for the volumes of cones, cylinders and spheres and use them to solve real-world and mathematical problems.

Statistics and Probability

Cluster	Investigate patterns of association in bivariate data.
M.8.25	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association and nonlinear association.

M.8.26	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line.
M.8.27	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. (e.g., In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.)
M.8.28	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. (e.g., Collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?)

